
Operator precedence parsing

Bottom-up parsing methods that follow the idea of shift-reduce
parsers

Several flavors: operator, simple, and weak precedence.

In this course, only weak precedence

Main di↵erences with respect to LR parsers:
I There is no explicit state associated to the parser (and thus no state

pushed on the stack)
I The decision of whether to shift or reduce is taken based solely on the

symbol on the top of the stack and the next input symbol (and stored
in a shift-reduce table)

I In case of reduction, the handle is the longest sequence at the top of
stack matching the RHS of a rule

Syntax analysis 194

Structure of the weak precedence parser

Weak precedence parsing output

Shift-reduce table
terminals and $

te
rm

in
al

s,

no
nt

er
m

in
al

s
an

d
$

Shift/Reduce/Error

stack

input a1 ai an $

X1

X2

Xm

Xm�1

(Ã modifier)Syntax analysis 195

Weak precedence parsing algorithm

Create a stack with the special symbol $
a = getnexttoken()
while (True)

if (Stack== $S and a == $)
break // Parsing is over

Xm = top(Stack)
if (SRT [Xm, a] = shift)

Push a onto the stack
a = getnexttoken()

elseif (SRT [Xm, a] = reduce)
Search for the longest RHS that matches the top of the stack
if no match found

call error-recovery routine
Let denote this rule by Y ! Xm�r+1

. . . Xm

Pop r elements o↵ the stack
Push Y onto the stack
Output Y ! Xm�r+1

. . . Xm

else call error-recovery routine

Syntax analysis 196

Example for the expression grammar

Example:

E ! E + T
E ! T
T ! T ⇤ F
T ! F
F ! (E)
F ! id

Shift/reduce table

⇤ + () id $

E S S R
T S R R R
F R R R R
⇤ S S
+ S S
(S S
) R R R R
id R R R R
$ S S

Syntax analysis 197

Example of parsing

Stack Input Action
$ id + id ⇤ id$ Shift
$id +id ⇤ id$ Reduce by F ! id
$F +id ⇤ id$ Reduce by T ! F
$T +id ⇤ id$ Reduce by E ! T
$E +id ⇤ id$ Shift
$E+ id ⇤ id$ Shift
$E + id ⇤id$ Reduce by F ! id
$E + F ⇤id$ Reduce by T ! F
$E + T ⇤id$ Shift
$E + T⇤ id$ Shift
$E + T ⇤ id $ Reduce by F ! id
$E + T ⇤ F $ Reduce by T ! T ⇤ F
$E + T $ Reduce by E ! E + T
$E $ Accept

Syntax analysis 198

Precedence relation: principle

We define the (weak precedence) relations l and m between
symbols of the grammar (terminals or nonterminals)

I X l Y if XY appears in the RHS of a rule or if X precedes a
reducible word whose leftmost symbol is Y

I X m Y if X is the rightmost symbol of a reducible word and Y the
symbol immediately following that word

Shift when Xm l a, reduce when Xm m a

Reducing changes the precedence relation only at the top of the
stack (there is thus no need to shift backward)

Syntax analysis 199

Precedence relation: formal definition

Let G = (V ,⌃,R,S) be a context-free grammar and $ a new
symbol acting as left and right end-marker for the input word.
Define V 0 = V [{$}
The weak precedence relations l and m are defined respectively on
V 0 ⇥ V and V ⇥ V 0 as follows:

1. X l Y if A! ↵XB� is in R, and B
+) Y �,

2. X l Y if A! ↵XY � is in R

3. $ l X if S
+) X↵

4. X m a if A! ↵B� is in R, and B
+) �X and �

⇤) a�

5. X m $ if S
+) ↵X

for some ↵, �, �, and B

Syntax analysis 200

Construction of the SR table: shift

Shift relation, l:

Initialize S to the empty set.
1 add $ l S to S
2 for each production X ! L

1

L
2

. . . Lk

for i = 1 to k � 1
add Li l Li+1

to S
3 repeat

for each⇤ pair X l Y in S
for each production Y ! L

1

L
2

. . . Lk

Add X l L
1

to S
until S did not change in this iteration.

⇤ We only need to consider the pairs X l Y with Y a nonterminal that were added in

S at the previous iteration

Syntax analysis 201

Example of the expression grammar: shift

E ! E + T
E ! T
T ! T ⇤ F
T ! F
F ! (E)
F ! id

Step 1 S l $
Step 2 E l +

+ l T
T l ⇤
⇤l F
(lE
El)

Step 3.1 + l F
⇤l id
⇤l (
(lT

Step 3.2 + l id
+ l (
(lF

Step 3.3 (l(
(lid

Syntax analysis 202

Construction of the SR table: reduce

Reduce relation, m:

Initialize R to the empty set.
1 add S m $ to R
2 for each production X ! L

1

L
2

. . . Lk

for each pair X l Y in S
add Lk m Y in R

3 repeat
for each⇤ pair X m Y in R

for each production X ! L
1

L
2

. . . Lk

Add Lk m Y to R
until R did not change in this iteration.

⇤ We only need to consider the pairs X m Y with X a nonterminal that were added in

R at the previous iteration.

Syntax analysis 203

Example of the expression grammar: reduce

E ! E + T
E ! T
T ! T ⇤ F
T ! F
F ! (E)
F ! id

Step 1 E m $
Step 2 T m +

F m ⇤
Tm)

Step 3.1 T m $
F m +
id m ⇤
) m ⇤
Fm)

Step 3.2 F m $
id m +
) m +
)m)

Step 3.3 id m $
) m $

Syntax analysis 204

Weak precedence grammars

Weak precedence grammars are those that can be analysed by a
weak precedence parser.

A grammar G = (V ,⌃,R,S) is called a weak precedence grammar
if it satisfies the following conditions:

1. There exist no pair of productions with the same right hand side
2. There are no empty right hand sides (A! ✏)
3. There is at most one weak precedence relation between any two

symbols
4. Whenever there are two syntactic rules of the form A! ↵X� and

B ! �, we don’t have X l B

Conditions 1 and 2 are easy to check

Conditions 3 and 4 can be checked by constructing the SR table.

Syntax analysis 205

Example of the expression grammar

E ! E + T
E ! T
T ! T ⇤ F
T ! F
F ! (E)
F ! id

Shift/reduce table

⇤ + () id $

E S S R

T S R R R

F R R R R

⇤ S S

+ S S

(S S

) R R R R

id R R R R

$ S S

Conditions 1-3 are satisfied (there is no conflict in the SR table)

Condition 4:
I E ! E + T and E ! T but we don’t have + l E (see slide 202)
I T ! T ⇤ F and T ! F but we don’t have ⇤l T (see slide 202)

Syntax analysis 206

Removing ✏ rules

Removing rules of the form A! ✏ is not di�cult

For each rule with A in the RHS, add a set of new rules consisting
of the di↵erent combinations of A replaced or not with ✏.

Example:

S ! AbA|B
B ! b|c
A ! ✏

is transformed into

S ! AbA|Ab|bA|b|B
B ! b|c

Syntax analysis 207

Summary of weak precedence parsing

Construction of a weak precedence parser

Eliminate ambiguity (or not, see later)

Eliminate productions with ✏ and ensure that there are no two
productions with identical RHS

Construct the shift/reduce table

Check that there are no conflict during the construction

Check condition 4 of slide 205

Syntax analysis 208

Using ambiguous grammars with bottom-up parsers

All grammars used in the construction of Shift/Reduce parsing
tables must be un-ambiguous

We can still create a parsing table for an ambiguous grammar but
there will be conflicts

We can often resolve these conflicts in favor of one of the choices to
disambiguate the grammar

Why use an ambiguous grammar?
I Because the ambiguous grammar is much more natural and the

corresponding unambiguous one can be very complex
I Using an ambiguous grammar may eliminate unnecessary reductions

Example:
E ! E + T |T

E ! E + E |E ⇤ E |(E)|id) T ! T ⇤ F |F
F ! (E)|id

Syntax analysis 209

Set of LR(0) items of the ambiguous expression grammar

E ! E + E |E ⇤ E |(E)|id

Follow(E) = {$,+, ⇤,)}
) states 7 and 8 have
shift/reduce conflicts for
+ and ⇤.

(Dragonbook)

Syntax analysis 210

Disambiguation
Example:

Parsing of id + id ⇤ id will give the configuration

(0E1 + 4E7, ⇤id$)

We can choose:
I ACTION[7, ⇤] =shift) precedence to ⇤
I ACTION[7, ⇤] =reduce E ! E + E) precedence to +

Parsing of id + id + id will give the configuration

(0E1 + 4E7,+id$)

We can choose:
I ACTION[7,+] =shift) + is right-associative
I ACTION[7,+] =reduce E ! E + E) + is left-associative

(same analysis for I
8

)

Syntax analysis 211

Error detection and recovery

In table-driven parsers, there is an error as soon as the table
contains no entry (or an error entry) for the current stack (state)
and input symbols

The least one can do: report a syntax error and give information
about the position in the input file and the tokens that were
expected at that position

In practice, it is however desirable to continue parsing to report
more errors

There are several ways to recover from an error:
I Panic mode
I Phrase-level recovery
I Introduce specific productions for errors
I Global error repair

Syntax analysis 212

Panic-mode recovery

In case of syntax error within a “phrase”, skip until the next
synchronizing token is found (e.g., semicolon, right parenthesis) and
then resume parsing

In LR parsing:
I Scan down the stack until a state s with a goto on a particular

nonterminal A is found
I Discard zero or more input symbols until a symbol a is found that can

follow A
I Stack the state GOTO(s,A) and resume normal parsing

Syntax analysis 213

Phrase-level recovery

Examine each error entry in the parsing table and decide on an
appropriate recovery procedure based on the most likely programmer
error.

Examples in LR parsing: E ! E + E |E ⇤ E |(E)|id
I id + ⇤id :
⇤ is unexpected after a +: report a “missing operand” error, push an
arbitrary number on the stack and go to the appropriate next state

I id + id) + id :
Report a “unbalanced right parenthesis” error and remove the right
parenthesis from the input

Syntax analysis 214

Other error recovery approaches

Introduce specific productions for detecting errors:

Add rules in the grammar to detect common errors

Examples for a C compiler:
I ! if E I (parenthesis are missing around the expression)
I ! if (E) then I (then is not needed in C)

Global error repair:

Try to find globally the smallest set of insertions and deletions that
would turn the program into a syntactically correct string

Very costly and not always e↵ective

Syntax analysis 215

Building the syntax tree

Parsing algorithms presented so far only check that the program is
syntactically correct

In practice, the parser needs also to build the parse tree (also called
concrete syntax tree)

Its construction is easily embedded into the parsing algorithm

Top-down parsing:
I Recursive descent: let each parsing function return the sub-trees for

the parts of the input they parse
I Table-driven: each nonterminal on the stack points to its node in the

partially built syntax tree. When the nonterminal is replaced by one
of its RHS, nodes for the symbols on the RHS are added as children
to the nonterminal node

Syntax analysis 216

Building the syntax tree

Bottom-up parsing:
I Each stack element points to a subtree of the syntax tree
I When performing a reduce, a new syntax tree is built with the

nonterminal at the root and the popped-o↵ stack elements as children

Note:
I In practice, the concrete syntax tree is not built but rather an

simplified abstract syntax tree
I Depending on the complexity of the compiler, the syntax tree might

even not be constructed

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

 x3 = y + 3;

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

 asst-stmt ! id = expr ;
 expr ! number
 | id
 | expr + expr

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

 x3 = y + 3;

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

 asst-stmt ! id = expr ;
 expr ! number
 | id
 | expr + expr

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting

Syntax analysis 217

Conclusion: top-down versus bottom-up parsing

Top-down
I Easier to implement (recursively), enough for most standard

programming languages
I Need to modify the grammar sometimes strongly, less general than

bottom-up parsers
I Used in most hand-written compilers

Bottom-up:
I More general, less strict rules on the grammar, SLR(1) powerful

enough for most standard programming languages
I More di�cult to implement, less easy to maintain (add new rules,

etc.)
I Used in most parser generators like Yacc or Bison (but JavaCC is

top-down)

Syntax analysis 218

For your project

The choice of a parsing technique is left open for the project but we
ask you to implement the parser by yourself (Yacc, bison or other
parser generators are forbidden)

Weak precedence parsing was the recommended method in previous
implementations of this course

Motivate your choice in your report and explain any transformation
you had to apply to your grammar to make it fit the parser’s
constraints

To avoid mistakes, you should build the parsing tables by program

Syntax analysis 219

