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Course organization

Theoretical course
I Wednesday, 14h-16h, R18, Institut Montefiore
I About 6-7 lectures
I Slides online on the course web page (available before each lecture)
I Give you the basis to achieve the project

Project
I One (big) project
I Implementation of a compiler (from scratch) for languages of your

choice
I (more on this after the introduction)

Evaluation
I Almost exclusively on the basis of the project
I Written report, short presentation of your compiler (in front of the

class), oral exam
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Course outline

Part 1: Introduction
Part 2: Lexical analysis
Part 3: Syntax analysis
Part 4: Semantic analysis
Part 5: Intermediate code generation
Part 6: Code generation
Part 7: Conclusion
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Part 1

Introduction

Introduction 6



Outline

1. What is a compiler

2. Compiler structure

3. Course project

Introduction 7



Compilers

A compiler is a program (written in a language Lc) that:
I reads another program written in a given source language Ls

I and translates (compiles) it into an equivalent program written in a
second (target) language LO .

LS LO

LC

The compiler also returns all errors contained in the source program

Examples of combination:
I LC =C, LS =C, LO=Assembler (gcc)
I LC =C, LS =java, LO=C
I LC =java, LS =LATEX, LO=HTML
I ...

Bootstrapping: LC = LS
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Compiler
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Interpreter

An interpreter is a program that:
I executes directly the operations specified by the source program on

data provided by the user

Usually slower at mapping inputs to outputs than compiled code
(but gives better error diagnostics)

Introduction 10



Hybrid solution   

  

 

  

 

     

             
              

             
           

           
    

             
          

              
            

      
           

             
              

              
              

    

     
             

              
      

            
          

            
          

           

              
 

Hybrid solutions are possible

Example: Java combines compilation and interpretation
I Java source program is compiled into an intermediate form called

bytecodes
I Bytecodes are then interpreted by a java virtual machine (or compiled

into machine language by just-in-time compilers).
I Main advantage is portability
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A broader picture

Preprocessor: include files,
macros... (sort of small
compilers).

Assembler: generate machine
code from assembly program.

Linker: relocates relative
addresses and resolves external
references.

Loader: loads the executable file
in memory for execution.
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Why study compilers?

There is small chance that you will ever write a full compiler in your
professional carrier.

Then why study compilers?
I To improve your culture in computer science (not a very good reason)

I To get a better intuition about high-level languages and therefore
become a better coder

I Compilation is not restricted to the translation of computer programs
into assembly code

I Translation between two high-level languages (Java to C++, Lisp to
C, Python to C, etc.)

I Translation between two arbitrary languages, not necessarily
programming ones (word to html, pdf to ps, etc.), aka
source-to-source compilers or transcompilers

Introduction 13



Why study compilers?

I The techniques behind compilers are useful for other purposes as well
I Data structures, graph algorithms, parsing techniques, language

theory...

I There is a good chance that a computer scientist will need to write a
compiler or interpreter for a domain-specific language

I Example: database query languages, text-formatting language, scene
description language for ray-tracers, search engine, sed/awk...

I Very nice application of concepts learned in other courses
I Data structures and algorithms, introduction to computability,

computation structures...
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General structure of a compiler

Except in very rare cases, translation can not be done word by word

Compiler are (now) very structured programs

Typical structure of a compiler in two stages:
I Front-end/analysis:

I Breaks the source program into constituent pieces
I Detect syntaxic and semantic errors
I Produce an intermediate representation of the language
I Store in a symbol table informations about procedures and variables

of the source program

I Back-end/synthesis:
I Construct the target program from the intermediate representation

and the symbol table

I Typically, the front end is independent of the target language, while
the back end is independent of the source language

I One can have a middle part that optimizes the intermediate
representation (and is thus independent of both the source and target
languages)
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General structure of a compiler

source program

Front-end

Intermediate representation

Back-end

LI

LO

LS

target program
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Intermediate representation
The intermediate representation:

Ensures portability (it’s easy to change the source or the target
language by adapting the front-end or back-end).

Should be at the same time easy to produce from the source
language and easy to translates into the target language

source program

Front-end

Intermediate representation

Back-end

LI

target program

Back-end

target program

Back-end

target program

source program

Front-end

source program

Front-end

L1
S L2

S L3
S

L1
O L2

O L3
O
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Detailed structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code
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Lexical analysis or scanning
Input: Character stream ⇒ Output: token streams

The lexical analyzer groups the characters into meaningful sequences
called lexemes.

I Example: “position = initial + rate * 60;” is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.

I (Non-significant blanks and comments are removed during scanning)

For each lexeme, the lexical analyzer produces as output a token of
the form: 〈token-name, attribute-value〉

I The produced tokens for “position = initial + rate * 60” are
as follows

〈id , 1〉, 〈=〉, 〈id , 2〉, 〈+〉, 〈id , 3〉, 〈∗〉, 〈60〉
with the symbol table:

1 position . . .
2 initial . . .
3 rate . . .
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Lexical analysis or scanning

In practice:

Each token is defined by a regular expression
I Example:

Letter = A− Z |a− z
Digit = 0− 9
Identifier = letter(letter

⋃
Digit)∗

Lexical analysis is implemented by
I building a non deterministic finite automata from all tokens regular

expressions
I eliminating non determinism
I Simplifying it

There exist automatic tools to do that
I Examples: lex, flex...

Introduction 20



Lexical analysis or scanning
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Syntax analysis or parsing
Input: token stream ⇒ Output: syntax tree

Parsing groups tokens into grammatical phrases

The result is represented in a parse tree, ie. a tree-like
representation of the grammatical structure of the token stream.

Example:
I Grammar for assignement statement:

asst-stmt → id = exp ;
exp → number | id | expr + expr

I Resulting parse tree:

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

    x3 = y + 3;
  

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

    asst-stmt ! id = expr ;
    expr      ! number
              |  id
              |  expr + expr
  

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting
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Syntax analysis or parsing

The parse tree is often simplified into a (abstract) syntax tree:

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

    x3 = y + 3;
  

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

    asst-stmt ! id = expr ;
    expr      ! number
              |  id
              |  expr + expr
  

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting

This tree is used as a basis structure for all subsequent phases

On parsing algorithms:
I Languages are defined by context-free grammars
I Parse and syntax trees are constructed by building automatically a

(kind of) pushdown automaton from the grammar
I Typically, these algorithms only work for a (large) subclass of

context-free grammars
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Lexical versus syntax analysis

The division between scanning and parsing is somewhat arbitrary.

Regular expressions could be represented by context-free grammars

Mathematical expression grammar:

EXPRESSION → EXPRESSION OP2 EXPRESSION
Syntax EXPRESSION → NUMBER

EXPRESSION → (EXPRESSION)
OP2 → +| − | ∗ |/

Lexical NUMBER → DIGIT | DIGIT NUMBER
DIGIT → 0|1|2|3|4|5|6|7|8|9

The main goal of lexical analysis is to simplify the syntax analysis
(and the syntax tree).

Introduction 24



Syntax analysis or parsing
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Semantic analysis

Input: syntax tree ⇒ Output: (augmented) syntax tree

Context-free grammar can not represent all language constraints,
e.g. non local/context-dependent relations.

Semantic/contextual analysis checks the source program for
semantic consistency with the language definition.

I A variable can not be used without having been defined
I The same variable can not be defined twice
I The number of arguments of a function should match its definition
I One can not multiply a number and a string
I . . .

(none of these constraints can be represented in a context-free
grammar)

Introduction 26



Semantic analysis

Semantic analysis also carries out type checking:
I Each operator should have matching operands
I In some cases, type conversions (coercions) might be possible (e.g.,

for numbers)

Example: position = initial + rate * 60
If the variables position, initial, and rate are defined as
floating-point variables and 60 was read as an integer, it may be
converted into a floating-point number.
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Semantic analysis
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Intermediate code generation

Input: syntax tree ⇒ Output: Intermediate representation

A compiler typically uses one or more intermediate representations
I Syntax trees are a form of intermediate representation used for syntax

and semantic analysis

After syntax and semantic analysis, many compilers generate a
low-level or machine-like intermediate representation

Two important properties of this intermediate representation:
I Easy to produce
I Easy to translate into the target machine code
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Intermediate code generation

Example: Three-address code with instructions of the form
x = y op z.

I Assembly-like instructions with three operands (at most) per
instruction

I Assume an unlimited number of registers

Translation of the syntax tree

      

 
  

       

 
  
 

          
 

  

   

  
  

   
 
   

      

 
 
 

      
   
     
     
   

     
     

   
    

   
    

   

       

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3
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Intermediate code generation
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Intermediate code optimization
Input: Intermediate representation ⇒ Output: (better) intermediate
representation

Goal: improve the intermediate code (to get better target code at
the end)

Machine-independent optimization (versus machine-dependent
optimization of the final code)

Different criteria: efficiency, code simplicity, power consumption. . .

Example:
t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

⇒ t1 = id3 * 60.0
id1 = id2 + t1

Optimization is complex and could be very time consuming

Very important step in modern compilers
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Intermediate code optimization
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Code generation
Input: Intermediate representation ⇒ Output: target machine code

From the intermediate code to real assembly code for the target
machine

Needs to take into account specifities of the target machine, eg.,
number of registers, operators in instruction, memory management.

One crucial aspect is register allocation

For our example:

t1 = id3 * 60.0
id1 = id2 + t1
⇒
LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1,R1
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Final code generation
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Symbol table

1 position . . .
2 initial . . .
3 rate . . .

Records the variables names used in the source program
Collects information about each symbol:

I Type information
I Storage location (of the variable in the compiled program)
I Scope
I For function symbol: number and types of arguments and the type

returned

Needs to allow quick retrieval and storage of a symbol and its
attached information in the table

Implementation by a dictionary structure (binary search tree,
hash-table,...).
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Error handling

Each phase may produce errors.

A good compiler should report them and provide as much
information as possible to the user.

I Not only “syntax error”.

Ideally, the compiler should not stop after the first error but should
continue and detect several errors at once (to ease debugging).

Introduction 37



Phases and Passes

The description of the different phases makes them look sequential

In practice, one can combine several phases into one pass (i.e., one
complete reading of an input file).

For example:
I One pass through the initial code for lexical analysis, syntax analysis,

semantic analysis, and intermediate code generation (front-end).
I One or several passes through the intermediate representation for

code optimization (optional)
I One pass through the intermediate representation for the machine

code generation (back-end)
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Compiler-construction tools

First compilers were written from scratch, and considered as very
difficult programs to write.

I The first fortran compiler required 18 man-years of work

There exist now several theoretical tools and softwares to automate
several phases of the compiler.

I Lexical analysis: regular expressions and finite state automata
(Softwares: (f)lex)

I Syntax analysis: grammars and pushdown automata (Softwares:
bison/yacc)

I Semantic analysis and intermediate code generation: syntax directed
translation

I Code optimization: data flow analysis

Introduction 39



This course

Although the back-end is more and more important in modern
compilers, we will insist more on the front-end and general principles

I source-to-source or transcompilers

Tentative outline:
I Lexical analysis
I Syntax analysis
I Semantic analysis
I Intermediate code generation (syntax directed translation)
I Some notions about code generation
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Compiler project

Implement a compiler from scratch

By group of 1, 2, or 3 students

The choice of source and target languages is free

Implementation language Lc can be chosen among c, c++, java,
python, scheme, and lisp.
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Compiler project: languages Ls and Lo

They should not be too simple, nor too complex.
Two bad choices:

I French → Morse code (too simple)
I Python → RISC assembly code (too complex)

Languages need not to be programming languages

For Ls , you can consider a reasonable subset of an otherwise too
complex language

Examples from previous years:
I UML → LATEX
I Scheme → Java
I Lylipond → Java
I Logo → Java/Swing
I Toki Pona (google it) → français
I . . .

Choose according to your taste and what you want to learn from
this course !
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Course project

Suggested methodology:
I Write (and potentially simplify) the grammar of the source language
I Design or automatic generation (LEX,...) of the scanner
I Parsing:

I Construction of the shift-reduce table
I Implementation of the parser

I Write the translation rules. Syntax-directed translation should be
enough in most cases.

Except for scanning, the use of existing library and data structures is
forbidden.

Efficiency and correctness of the compiler, as well as clarity of the
code and report are the main evaluation criteria.
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Deadlines

(subject to changes)

Group formation and first idea for the project: 26/02/2012

Complete project proposition and grammar of the source language:
4/03/2012

Approval of the project: 11/03/2012

Final report: 2/05/2012

Project presentation and demonstration: 9/05/2012

Oral exams: during the June session

Send all emails to both vincent.botta@ulg.ac.be and
p.geurts@ulg.ac.be (with “[info0085]” in the subject)

All information about the project:
http://www.montefiore.ulg.ac.be/~botta/info0085-1
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Part 2

Lexical analysis
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Outline

1. Principle

2. Regular expressions

3. Analysis with non-deterministic finite automata

4. Analysis with deterministic finite automata

5. Implementing a lexical analyzer

Lexical analysis 46



Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code
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Lexical analysis or scanning

Goals of the lexical analysis
I Divide the character stream into meaningful sequences called lexemes.
I Label each lexeme with a token that is passed to the parser (syntax

analysis)
I Update the symbol tables with all identifiers (and numbers)
I Remove non-significant blanks and comments

Provide the interface between the source program and the parser

     

               
             

           
            

           
                

       

 
 

 
  

          

              
            
            

             
            

            
              

             
            

           
      

           

 
 

            
            

    

            
       

 
 

 

 

     
               

         

   
  

(Dragonbook)
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Example

  

w h i l e ( i  < z ) \n \t + i p ;

while (ip < z)
    ++ip;

p + +

T_While ( T_Ident < T_Ident ) ++ T_Ident

ip z ip

(Keith Schwarz)
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Example

  

w h i l e ( i  < z ) \n \t + i p ;

while (ip < z)
    ++ip;

p + +

T_While ( T_Ident < T_Ident ) ++ T_Ident

ip z ip

While

++

Ident

<

Ident Ident

ip z ip

(Keith Schwarz)
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Lexical versus syntax analysis

Why separate lexical analysis from parsing?

Simplicity of design: simplify both the lexical analysis and the syntax
analysis.

Efficiency: specialized techniques can be applied to improve lexical
analysis.

Portability: only the scanner needs to communicate with the outside
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Tokens, patterns, and lexemes

A token is a 〈name, attribute〉 pair. Attribute might be
multi-valued.

I Example: 〈Ident, ip〉, 〈Operator , <〉, 〈“)′′,NIL〉

A pattern describes the character strings for the lexemes of the
token.

I Example: a string of letters and digits starting with a letter, {<, >,
≤, ≥, ==}, “)”.

A lexeme for a token is a sequence of characters that matches the
pattern for the token

I Example: ip, “<”, “)” in the following program
while (ip < z)

++ip
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Defining a lexical analysis

1. Define the set of tokens

2. Define a pattern for each token (ie., the set of lexemes associated
with each token)

3. Define an algorithm for cutting the source program into lexemes and
outputs the tokens
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Choosing the tokens

Very much dependent on the source language

Typical token classes for programming languages:
I One token for each keyword
I One token for each “punctuation” symbol (left and right parentheses,

comma, semicolon...)
I One token for identifiers
I Several tokens for the operators
I One or more tokens for the constants (numbers or literal strings)

Attributes
I Allows to encode the lexeme corresponding to the token when

necessary. Example: pointer to the symbol table for identifiers,
constant value for constants.

I Not always necessary. Example: keyword, punctuation...
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Describing the patterns

A pattern defines the set of lexemes corresponding to a token.

A lexeme being a string, a pattern is actually a language.

Patterns are typically defined through regular expressions (that
define regular languages).

I Sufficient for most tokens
I Lead to efficient scanner
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Reminder: languages

An alphabet Σ is a set of characters
Example: Σ = {a, b}

A string over Σ is a finite sequence of elements from Σ
Example: aabba

A language is a set of strings
Example: L = {a, b, abab, babbba}

Regular languages: a subset of all languages that can be defined by
regular expressions
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Reminder: regular expressions

Any character a ∈ Σ is a regular expression L = {a}
ε is a regular expression L = {ε}
If R1 and R2 are regular expressions, then

I R1R2 is a regular expression
L(R1R2) is the concatenation of L(R1) and L(R2)

I R1|R2 (= R1

⋃
R2) is a regular expression

L(R1|R2) = L(R1)
⋃

L(R2)
I R∗1 is a regular expression

L(R∗1 ) is the Kleene closure of L(R1)
I (R1) is a regular expression

L((R1)) = L(R1)

Example: a regular expression for even numbers:

(+| − |ε)(0|1|2|3|4|5|6|7|8|9)∗(0|2|4|6|8)
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Notational conveniences

Regular definitions:

letter → A|B|...|Z|a|b|...|z
digit → 0|1|...|9

id → letter(letter |digit)∗

One or more instances: r + = rr∗

Zero or one instance: r? = r |ε
Character classes:

[abc]=a|b|c
[a-z]=a|b|...|z
[0-9]=0|1|...|9
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Examples

Keywords:
if, while, for, . . .

Identifiers:
[a-zA-Z ][a-zA-Z 0-9]∗

Integers:
[+−]?[0-9]+

Floats:
[+−]?(([0-9]+ (.[0-9]∗)?|.[0-9]+)([eE][+−]?[0-9]+)?)

String constants:
“([a-zA-Z0-9]|\[a-zA-Z])∗”
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Algorithms for lexical analysis

How to perform lexical analysis from token definitions through
regular expressions?

Regular expressions are equivalent to finite automata, deterministic
(DFA) or non-deterministic (NFA).

Finite automata are easily turned into computer programs

Two methods:

1. Convert the regular expressions to an NFA and simulate the NFA
2. Convert the regular expression to an NFA, convert the NFA to a DFA,

and simulate the DFA.

Lexical analysis 60



Reminder: non-deterministic automata (NFA)
A non-deterministic automata is a five-tuple M = (Q,Σ,∆, s0,F )
where:

Q is a finite set of states,

Σ is an alphabet,

∆ ⊂ (Q × (Σ
⋃{ε})× Q) is the transition relation,

s ∈ Q is the initial state,

F ⊆ Q is the set of accepting states

Example:

2.3. NONDETERMINISTIC FINITE AUTOMATA 17

We will mostly use a graphical notation to describe finite automata. States are
denoted by circles, possibly containing a number or name that identifies the state.
This name or number has, however, no operational significance, it is solely used
for identification purposes. Accepting states are denoted by using a double circle
instead of a single circle. The initial state is marked by an arrow pointing to it from
outside the automaton.

A transition is denoted by an arrow connecting two states. Near its midpoint,
the arrow is labelled by the symbol (possibly e) that triggers the transition. Note
that the arrow that marks the initial state is not a transition and is, hence, not marked
by a symbol.

Repeating the maze analogue, the circles (states) are rooms and the arrows
(transitions) are one-way corridors. The double circles (accepting states) are exits,
while the unmarked arrow to the starting state is the entrance to the maze.

Figure 2.3 shows an example of a nondeterministic finite automaton having
three states. State 1 is the starting state and state 3 is accepting. There is an epsilon-
transition from state 1 to state 2, transitions on the symbol a from state 2 to states 1
and 3 and a transition on the symbol b from state 1 to state 3. This NFA recognises
the language described by the regular expression a⇤(a|b). As an example, the string
aab is recognised by the following sequence of transitions:

from to by
1 2 e
2 1 a
1 2 e
2 1 a
1 3 b

At the end of the input we are in state 3, which is accepting. Hence, the string is
accepted by the NFA. You can check this by placing a coin at the starting state and
follow the transitions by moving the coin.

Note that we sometimes have a choice of several transitions. If we are in state

-⇢⇡
�⇠

1 -b

✓e

⇢⇡
�⇠
✓⌘◆⇣

3

⇢⇡
�⇠

2

 

a
?

a

Figure 2.3: Example of an NFA
(Mogensen)

Transition table
State a b ε
1 ∅ {3} {2}
2 {1,3} ∅ ∅
3 ∅ ∅ ∅
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Reminder: from regular expression to NFA

A regular expression can be transformed into an equivalent NFA
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(Dragonbook)

Lexical analysis 62



Reminder: from regular expression to NFA
Example: (a|b)∗ac (Mogensen)

20 CHAPTER 2. LEXICAL ANALYSIS
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⌫
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e

Figure 2.5: NFA for the regular expression (a|b)⇤ac

the completed NFA. Note that even though we allow an NFA to have several ac-
cepting states, an NFA constructed using this method will have only one: the one
added at the end of the construction.

An NFA constructed this way for the regular expression (a|b)⇤ac is shown in
figure 2.5. We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in figure 2.4 for any regular expression by expanding
out all shorthand, e.g. converting s+ to ss⇤, [0-9] to 0|1|2| · · · |9 and s? to s|e, etc.
However, this will result in very large NFAs for some expressions, so we use a few
optimised constructions for the shorthands. Additionally, we show an alternative
construction for the regular expression e. This construction does not quite follow
the formula used in figure 2.4, as it does not have two half-transitions. Rather,
the line-segment notation is intended to indicate that the NFA fragment for e just
connects the half-transitions of the NFA fragments that it is combined with. In
the construction for [0-9], the vertical ellipsis is meant to indicate that there is
a transition for each of the digits in [0-9]. This construction generalises in the
obvious way to other sets of characters, e.g., [a-zA-Z0-9]. We have not shown a
special construction for s? as s|e will do fine if we use the optimised construction
for e.

The optimised constructions are shown in figure 2.6. As an example, an NFA
for [0-9]+ is shown in figure 2.7. Note that while this is optimised, it is not optimal.
You can make an NFA for this language using only two states.

Suggested exercises: 2.2(a), 2.10(b).

The NFA N(r) for an expression r is such that:

N(r) has at most twice as many states as there are operators and
operands in R.

N(r) has one initial state and one accepting state (with no outgoing
transition from the accepting state and no incoming transition to
the initial state).

Each (non accepting) state in N(r) has either one outgoing
transition or two outgoing transitions, both on ε.

Lexical analysis 63



Simulating an NFA

Algorithm to check whether an input string is accepted by the NFA:

(Dragonbook)

nextChar(): returns the next character on the input stream

move(S , c): returns the set of states that can be reached from
states in S when observing c .

ε-closure(S): returns all states that can be reached with ε
transitions from states in S .
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Lexical analysis

What we have so far:
I Regular expressions for each token
I NFAs for each token that can recognize the corresponding lexemes
I A way to simulate an NFA

How to combine these to cut apart the input text and recognize
tokens?

Two ways:
I Simulate all NFAs in turn (or in parallel) from the current position

and output the token of the first one to get to an accepting state
I Merge all NFAs into a single one with labels of the tokens on the

accepting states

Lexical analysis 65



Illustration

i! f!

=

[0-9]!
[0-9]!

[a-z]!
[a-z0-9]!

1 2 3

4 5

6 7

8 9

IF#

EQ#

NUM#

ID#

Four tokens: IF=if, ID=[a-z][a-z0-9]∗, EQ=’=’, NUM=[0-9]+

Lexical analysis of x = 60 yields:

〈ID, x〉, 〈EQ〉, 〈NUM, 60〉
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Illustration: ambiguities
i! f!

=

[0-9]!
[0-9]!

[a-z]!
[a-z0-9]!

1 2 3

4 5

6 7

8 9

IF#

EQ#

NUM#

ID#

Lexical analysis of ifu26 = 60

Many splits are possible:

〈IF 〉, 〈ID, u26〉, 〈EQ〉, 〈NUM, 60〉
〈ID, ifu26〉, 〈EQ〉, 〈NUM, 60〉

〈ID, ifu〉, 〈NUM, 26〉, 〈EQ〉, 〈NUM, 6〉, 〈NUM, 0〉
....
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Conflict resolutions

Principle of the longest matching prefix: we choose the longest
prefix of the input that matches any token

Following this principle, ifu26 = 60 will be split into:

〈ID, ifu26〉, 〈EQ〉, 〈NUM, 60〉
How to implement?

I Run all NFAs in parallel, keeping track of the last accepting state
reached by any of the NFAs

I When all automata get stuck, report the last match and restart the
search at that point

Requires to retain the characters read since the last match to
re-insert them on the input

I In our example, ’=’ would be read and then re-inserted in the buffer.

Lexical analysis 68



Other source of ambiguity

A lexeme can be accepted by two NFAs
I Example: keywords are often also identifiers (if in the example)

Two solutions:
I Report an error (such conflict is not allowed in the language)
I Let the user decide on a priority order on the tokens (eg., keywords

have priority over identifiers)
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What if nothing matches

What if we can not reach any accepting states given the current
input?

Add a “catch-all” rule that matches any character and reports an
error

i! f!

=

[0-9]!
[0-9]!

[a-z]!
[a-z0-9]!

1 2 3

4 5

6 7

8 9

IF#

EQ#

NUM#

ID#

10! 11!
⌃

Lexical analysis 70



Merging all automata into a single NFA

In practice, all NFAs are merged and simulated as a single NFA

Accepting states are labeled with the token name

i! f!

=

[0-9]!
[0-9]!

[a-z]!
[a-z0-9]!

1 2 3

4 5

6 7

8 9

IF#

EQ#

NUM#

ID#

10! 11!
⌃

0
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Lexical analysis with an NFA: summary

Construct NFAs for all regular expression

Merge them into one automaton by adding a new start state

Scan the input, keeping track of the last known match

Break ties by choosing higher-precedence matches

Have a catch-all rule to handle errors
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Computational efficiency

(Dragonbook)

In the worst case, an NFA with |Q| states takes O(|S ||Q|2) time to
match a string of length |S |
Complexity thus depends on the number of states

It is possible to reduce complexity of matching to O(|S |) by
transforming the NFA into an equivalent deterministic finite
automaton (DFA)
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Reminder: deterministic finite automaton

Like an NFA but the transition relation ∆ ⊂ (Q × (Σ
⋃{ε})× Q) is

such that:
I Transitions based on ε are not allowed
I Each state have at most one outgoing transition defined for every

letter

Transition relation is replaced by a transition function
δ : Q × Σ→ Q

Example of a DFA
22 CHAPTER 2. LEXICAL ANALYSIS

-⇢⇡
�⇠

1 -b

6a

⇢⇡
�⇠
✓⌘◆⇣

3
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2
3

a

?

b

Figure 2.8: Example of a DFA

2.5 Deterministic finite automata

Nondeterministic automata are, as mentioned earlier, not quite as close to “the ma-
chine” as we would like. Hence, we now introduce a more restricted form of finite
automaton: The deterministic finite automaton, or DFA for short. DFAs are NFAs,
but obey a number of additional restrictions:

• There are no epsilon-transitions.

• There may not be two identically labelled transitions out of the same state.

This means that we never have a choice of several next-states: The state and the
next input symbol uniquely determine the transition (or lack of same). This is why
these automata are called deterministic. Figure 2.8 shows a DFA equivalent to the
NFA in figure 2.3.

The transition relation if a DFA is a (partial) function, and we often write it as
such: move(s,c) is the state (if any) that is reached from state s by a transition on
the symbol c. If there is no such transition, move(s,c) is undefined.

It is very easy to implement a DFA: A two-dimensional table can be cross-
indexed by state and symbol to yield the next state (or an indication that there is no
transition), essentially implementing the move function by table lookup. Another
(one-dimensional) table can indicate which states are accepting.

DFAs have the same expressive power as NFAs: A DFA is a special case of
NFA and any NFA can (as we shall shortly see) be converted to an equivalent DFA.
However, this comes at a cost: The resulting DFA can be exponentially larger than
the NFA (see section 2.10). In practice (i.e., when describing tokens for a program-
ming language) the increase in size is usually modest, which is why most lexical
analysers are based on DFAs.

Suggested exercises: 2.7(a,b), 2.8.

(Mogensen)
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Reminder: from NFA to DFA

DFA and NFA (and regular expressions) have the same expressive
power

An NFA can be converted into a DFA by the subset construction
method

Main idea: mimic the simulation of the NFA with a DFA
I Every state of the resulting DFA corresponds to a set of states of the

NFA. First state is ε-closure(s0).
I Transition between states of DFA correspond to transitions between

set of states in the NFA:

δ(S , c) = ε-closure(move(S , c))

I A set of the DFA is accepting if any of the NFA states that it
contains is accepting

See INFO0016 or the reference book for more details

Lexical analysis 75



Reminder: from NFA to DFA20 CHAPTER 2. LEXICAL ANALYSIS
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Figure 2.5: NFA for the regular expression (a|b)⇤ac

the completed NFA. Note that even though we allow an NFA to have several ac-
cepting states, an NFA constructed using this method will have only one: the one
added at the end of the construction.

An NFA constructed this way for the regular expression (a|b)⇤ac is shown in
figure 2.5. We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in figure 2.4 for any regular expression by expanding
out all shorthand, e.g. converting s+ to ss⇤, [0-9] to 0|1|2| · · · |9 and s? to s|e, etc.
However, this will result in very large NFAs for some expressions, so we use a few
optimised constructions for the shorthands. Additionally, we show an alternative
construction for the regular expression e. This construction does not quite follow
the formula used in figure 2.4, as it does not have two half-transitions. Rather,
the line-segment notation is intended to indicate that the NFA fragment for e just
connects the half-transitions of the NFA fragments that it is combined with. In
the construction for [0-9], the vertical ellipsis is meant to indicate that there is
a transition for each of the digits in [0-9]. This construction generalises in the
obvious way to other sets of characters, e.g., [a-zA-Z0-9]. We have not shown a
special construction for s? as s|e will do fine if we use the optimised construction
for e.

The optimised constructions are shown in figure 2.6. As an example, an NFA
for [0-9]+ is shown in figure 2.7. Note that while this is optimised, it is not optimal.
You can make an NFA for this language using only two states.

Suggested exercises: 2.2(a), 2.10(b).
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Figure 2.5: NFA for the regular expression (a|b)⇤ac

the completed NFA. Note that even though we allow an NFA to have several ac-
cepting states, an NFA constructed using this method will have only one: the one
added at the end of the construction.

An NFA constructed this way for the regular expression (a|b)⇤ac is shown in
figure 2.5. We have numbered the states for future reference.

2.4.1 Optimisations

We can use the construction in figure 2.4 for any regular expression by expanding
out all shorthand, e.g. converting s+ to ss⇤, [0-9] to 0|1|2| · · · |9 and s? to s|e, etc.
However, this will result in very large NFAs for some expressions, so we use a few
optimised constructions for the shorthands. Additionally, we show an alternative
construction for the regular expression e. This construction does not quite follow
the formula used in figure 2.4, as it does not have two half-transitions. Rather,
the line-segment notation is intended to indicate that the NFA fragment for e just
connects the half-transitions of the NFA fragments that it is combined with. In
the construction for [0-9], the vertical ellipsis is meant to indicate that there is
a transition for each of the digits in [0-9]. This construction generalises in the
obvious way to other sets of characters, e.g., [a-zA-Z0-9]. We have not shown a
special construction for s? as s|e will do fine if we use the optimised construction
for e.

The optimised constructions are shown in figure 2.6. As an example, an NFA
for [0-9]+ is shown in figure 2.7. Note that while this is optimised, it is not optimal.
You can make an NFA for this language using only two states.

Suggested exercises: 2.2(a), 2.10(b).
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s03

Figure 2.9: DFA constructed from the NFA in figure 2.5

move(s03,a) = e-closure({t | s 2 {4} and sat 2 T})
= e-closure({})
= {}

move(s03,b) = e-closure({t | s 2 {4} and sbt 2 T})
= e-closure({})
= {}

move(s03,c) = e-closure({t | s 2 {4} and sct 2 T})
= e-closure({})
= {}

Which now completes the construction of S0 = {s00,s
0
1,s

0
2,s

0
3}. Only s03 contains the

accepting NFA state 4, so this is the only accepting state of our DFA. Figure 2.9
shows the completed DFA.

Suggested exercises: 2.2(b), 2.4.

2.7 Size versus speed

In the above example, we get a DFA with 4 states from an NFA with 8 states.
However, as the states in the constructed DFA are (nonempty) sets of states from
the NFA there may potentially be 2n�1 states in a DFA constructed from an n-state

s0
1 {3, 8, 1, 2, 5, 6, 7}

{8, 1, 2, 5, 6, 7}
s0
3

s0
2

{4}

{1, 2, 5, 6, 7}s0
0

NFA

DFA

(Mogensen)
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Simulating a DFA   

   
   

       
    
   

 
         

   

     

     

     
               

            
               

                
     

         
        

               
     

    

      

Time complexity is O(|S |) for a string of length |S |
Now independent of the number of states
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Lexical analysis with a DFA: summary

Construct NFAs for all regular expressions

Mark the accepting states of the NFAs by the name of the tokens
they accept

Merge them into one automaton by adding a new start state

Convert the combined NFA to a DFA

Convey the accepting state labeling of the NFAs to the DFA (by
taking into account precedence rules)

Scanning is similar as with an NFA
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Example: combined NFA for several tokens

38 CHAPTER 2. LEXICAL ANALYSIS
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Figure 2.12: Combined NFA for several tokens
(Mogensen)
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Example: combined DFA for several tokens

2.9. LEXERS AND LEXER GENERATORS 39
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Figure 2.13: Combined DFA for several tokens

Try lexing on the strings:

if 17

3e-y
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Speed versus memory

The number of states of a DFA can grow exponentially with respect
to the size of the corresponding regular expression (or NFA)

We have to choose between low-memory and slow NFAs and
high-memory and fast DFAs.

Note:

It is possible to minimise the number of states of a DFA in
O(n log n) (Hopcroft’s algorithm1)

I Theory says that any regular language has a unique minimal DFA
I However, the number of states may remain exponential in the size of

the regular expression after minimization

1http://en.wikipedia.org/wiki/DFA_minimization

Lexical analysis 81

http://en.wikipedia.org/wiki/DFA_minimization


Summary

Regular(
expressions(

NFA(

DFA(

minimiza5on(

determiniza5on(
Thompson’s(
construc5on(

Analyzer(

Kleene(
construc5on(

Token(
pa?erns(

Lexical analysis 82



Some langage specificities
Language specificities that make lexical analysis hard:

Whitespaces are irrelevant in Fortran.

DO 5 I = 1,25
DO5I = 1.25

PL/1: keywords can be used as identifiers:

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Python block defined by indentation:

if w == z:
a = b

else:
e = f

g = h

(the lexical analyser needs to record current identation and output a
token for each increase/decrease in indentation)

(Keith Schwarz)
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Implementing a lexical analyzer

In practice (and for your project), two ways:
I Write an ad-hoc analyser
I Use automatic tools like (F)LEX.

First approach usually gives a more efficient solution but is more
tedious

Second approach is less efficient but is more portable
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Example of an ad-hoc lexical analyser
(source: http://dragonbook.stanford.edu/lecture-notes.html)

Definition of the token classes (through constants)

  2  

example, the following input will not generate any errors in the lexical analysis phase, 
because the scanner has no concept of the appropriate arrangement of tokens for a 
declaration. The syntax analyzer will catch this error later in the next phase. 

 
int a double } switch b[2] =; 

 
Furthermore, the scanner has no idea how tokens are grouped.  In the above sequence, it 
returns b, [, 2, and ] as four separate tokens, having no idea they collectively form an 
array access. 
 
The lexical analyzer can be a convenient place to carry out some other chores like 
stripping out comments and white space between tokens and perhaps even some 
features like macros and conditional compilation (although often these are handled by 
some sort of preprocessor which filters the input before the compiler runs). 
 
Scanner Implementation 1: Loop and Switch 
There are two primary methods for implementing a scanner.  The first is a program that 
is hard-coded to perform the scanning tasks.  The second uses regular expression and 
finite automata theory to model the scanning process. 
 
A "loop & switch" implementation consists of a main loop that reads characters one by 
one from the input file and uses a switch statement to process the character(s) just read.  
The output is a list of tokens and lexemes from the source program. The following 
program fragment shows a skeletal implementation of a simple loop and switch scanner. 
The main program calls InitScanner and loops calling ScanOneToken until EOF.  
ScanOneToken reads the next character from the file and switches off that char to decide 
how to handle what is coming up next in the file.  The return values from the scanner 
can be passed on to the parser in the next phase. 
 
#define T_SEMICOLON  ';'     // use ASCII values for single char tokens 
#define T_LPAREN  '(' 
#define T_RPAREN  ')' 
#define T_ASSIGN  '=' 
#define T_DIVIDE  '/' 
 ... 
 
#define T_WHILE  257         // reserved words  
#define T_IF  258 
#define T_RETURN  259 
 ... 
 
#define T_IDENTIFIER  268    // identifiers, constants, etc. 
#define T_INTEGER  269 
#define T_DOUBLE   270 
#define T_STRING  271 
 
#define T_END  349           // code used when at end of file  
#define T_UNKNOWN  350       // token was unrecognized by scanner 
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Example of an ad-hoc lexical analyser

Structure for tokens  3  

struct token_t { 
  int type;                  // one of the token codes from above 
  union { 
    char stringValue[256];   // holds lexeme value if string/identifier 
    int intValue;            // holds lexeme value if integer 
    double doubleValue;      // holds lexeme value if double 
  } val; 
}; 
 
int main(int argc, char *argv[]) 
{ 
  struct token_t token; 
   
  InitScanner(); 
   while (ScanOneToken(stdin, &token) != T_END)  
    ; // this is where you would process each token 
  return 0; 
} 
 
static void InitScanner() 
{ 
  create_reserved_table();  // table maps reserved words to token type 
  insert_reserved("WHILE", T_WHILE) 
  insert_reserved("IF", T_IF) 
  insert_reserved("RETURN", T_RETURN) 
  .... 
} 
 
static int ScanOneToken(FILE *fp, struct token_t *token) 
{ 
  int i, ch, nextch; 
   
  ch = getc(fp);    // read next char from input stream 
  while (isspace(ch))    // if necessary, keep reading til non-space char 
    ch = getc(fp);    // (discard any white space) 
     
  switch(ch) { 
    case '/':    // could either begin comment or T_DIVIDE op 
      nextch = getc(fp); 
      if (nextch == '/' || nextch == '*') 
        ; // here you would skip over the comment 
      else  
        ungetc(nextch, fp); // fall-through to single-char token case 
         
    case ';': case ',': case '=':  // ... and other single char tokens  
      token->type = ch; // ASCII value is used as token type 
      return ch;     // ASCII value used as token type 
       
    case 'A': case 'B': case 'C':   // ... and other upper letters 
      token->val.stringValue[0] = ch;   
      for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase 
        token->val.stringValue[i] = ch; 
      ungetc(ch, fp);   
      token->val.stringValue[i] = '\0';  // lookup reserved word 
      token->type = lookup_reserved(token->val.stringValue); 
      return token->type; 
       
    case 'a': case 'b': case 'c':  // ... and other lower letters 
      token->type = T_IDENTIFIER; 
      token->val.stringValue[0] = ch; 
      for (i = 1; islower(ch = getc(fp)); i++)  

Main function

  3  

struct token_t { 
  int type;                  // one of the token codes from above 
  union { 
    char stringValue[256];   // holds lexeme value if string/identifier 
    int intValue;            // holds lexeme value if integer 
    double doubleValue;      // holds lexeme value if double 
  } val; 
}; 
 
int main(int argc, char *argv[]) 
{ 
  struct token_t token; 
   
  InitScanner(); 
   while (ScanOneToken(stdin, &token) != T_END)  
    ; // this is where you would process each token 
  return 0; 
} 
 
static void InitScanner() 
{ 
  create_reserved_table();  // table maps reserved words to token type 
  insert_reserved("WHILE", T_WHILE) 
  insert_reserved("IF", T_IF) 
  insert_reserved("RETURN", T_RETURN) 
  .... 
} 
 
static int ScanOneToken(FILE *fp, struct token_t *token) 
{ 
  int i, ch, nextch; 
   
  ch = getc(fp);    // read next char from input stream 
  while (isspace(ch))    // if necessary, keep reading til non-space char 
    ch = getc(fp);    // (discard any white space) 
     
  switch(ch) { 
    case '/':    // could either begin comment or T_DIVIDE op 
      nextch = getc(fp); 
      if (nextch == '/' || nextch == '*') 
        ; // here you would skip over the comment 
      else  
        ungetc(nextch, fp); // fall-through to single-char token case 
         
    case ';': case ',': case '=':  // ... and other single char tokens  
      token->type = ch; // ASCII value is used as token type 
      return ch;     // ASCII value used as token type 
       
    case 'A': case 'B': case 'C':   // ... and other upper letters 
      token->val.stringValue[0] = ch;   
      for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase 
        token->val.stringValue[i] = ch; 
      ungetc(ch, fp);   
      token->val.stringValue[i] = '\0';  // lookup reserved word 
      token->type = lookup_reserved(token->val.stringValue); 
      return token->type; 
       
    case 'a': case 'b': case 'c':  // ... and other lower letters 
      token->type = T_IDENTIFIER; 
      token->val.stringValue[0] = ch; 
      for (i = 1; islower(ch = getc(fp)); i++)  
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Example of an ad-hoc lexical analyser

Initialization

  3  

struct token_t { 
  int type;                  // one of the token codes from above 
  union { 
    char stringValue[256];   // holds lexeme value if string/identifier 
    int intValue;            // holds lexeme value if integer 
    double doubleValue;      // holds lexeme value if double 
  } val; 
}; 
 
int main(int argc, char *argv[]) 
{ 
  struct token_t token; 
   
  InitScanner(); 
   while (ScanOneToken(stdin, &token) != T_END)  
    ; // this is where you would process each token 
  return 0; 
} 
 
static void InitScanner() 
{ 
  create_reserved_table();  // table maps reserved words to token type 
  insert_reserved("WHILE", T_WHILE) 
  insert_reserved("IF", T_IF) 
  insert_reserved("RETURN", T_RETURN) 
  .... 
} 
 
static int ScanOneToken(FILE *fp, struct token_t *token) 
{ 
  int i, ch, nextch; 
   
  ch = getc(fp);    // read next char from input stream 
  while (isspace(ch))    // if necessary, keep reading til non-space char 
    ch = getc(fp);    // (discard any white space) 
     
  switch(ch) { 
    case '/':    // could either begin comment or T_DIVIDE op 
      nextch = getc(fp); 
      if (nextch == '/' || nextch == '*') 
        ; // here you would skip over the comment 
      else  
        ungetc(nextch, fp); // fall-through to single-char token case 
         
    case ';': case ',': case '=':  // ... and other single char tokens  
      token->type = ch; // ASCII value is used as token type 
      return ch;     // ASCII value used as token type 
       
    case 'A': case 'B': case 'C':   // ... and other upper letters 
      token->val.stringValue[0] = ch;   
      for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase 
        token->val.stringValue[i] = ch; 
      ungetc(ch, fp);   
      token->val.stringValue[i] = '\0';  // lookup reserved word 
      token->type = lookup_reserved(token->val.stringValue); 
      return token->type; 
       
    case 'a': case 'b': case 'c':  // ... and other lower letters 
      token->type = T_IDENTIFIER; 
      token->val.stringValue[0] = ch; 
      for (i = 1; islower(ch = getc(fp)); i++)  
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Example of an ad-hoc lexical analyser

Scanning (single-char tokens)

  3  

struct token_t { 
  int type;                  // one of the token codes from above 
  union { 
    char stringValue[256];   // holds lexeme value if string/identifier 
    int intValue;            // holds lexeme value if integer 
    double doubleValue;      // holds lexeme value if double 
  } val; 
}; 
 
int main(int argc, char *argv[]) 
{ 
  struct token_t token; 
   
  InitScanner(); 
   while (ScanOneToken(stdin, &token) != T_END)  
    ; // this is where you would process each token 
  return 0; 
} 
 
static void InitScanner() 
{ 
  create_reserved_table();  // table maps reserved words to token type 
  insert_reserved("WHILE", T_WHILE) 
  insert_reserved("IF", T_IF) 
  insert_reserved("RETURN", T_RETURN) 
  .... 
} 
 
static int ScanOneToken(FILE *fp, struct token_t *token) 
{ 
  int i, ch, nextch; 
   
  ch = getc(fp);    // read next char from input stream 
  while (isspace(ch))    // if necessary, keep reading til non-space char 
    ch = getc(fp);    // (discard any white space) 
     
  switch(ch) { 
    case '/':    // could either begin comment or T_DIVIDE op 
      nextch = getc(fp); 
      if (nextch == '/' || nextch == '*') 
        ; // here you would skip over the comment 
      else  
        ungetc(nextch, fp); // fall-through to single-char token case 
         
    case ';': case ',': case '=':  // ... and other single char tokens  
      token->type = ch; // ASCII value is used as token type 
      return ch;     // ASCII value used as token type 
       
    case 'A': case 'B': case 'C':   // ... and other upper letters 
      token->val.stringValue[0] = ch;   
      for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase 
        token->val.stringValue[i] = ch; 
      ungetc(ch, fp);   
      token->val.stringValue[i] = '\0';  // lookup reserved word 
      token->type = lookup_reserved(token->val.stringValue); 
      return token->type; 
       
    case 'a': case 'b': case 'c':  // ... and other lower letters 
      token->type = T_IDENTIFIER; 
      token->val.stringValue[0] = ch; 
      for (i = 1; islower(ch = getc(fp)); i++)  
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Example of an ad-hoc lexical analyser

Scanning: keywords

  3  

struct token_t { 
  int type;                  // one of the token codes from above 
  union { 
    char stringValue[256];   // holds lexeme value if string/identifier 
    int intValue;            // holds lexeme value if integer 
    double doubleValue;      // holds lexeme value if double 
  } val; 
}; 
 
int main(int argc, char *argv[]) 
{ 
  struct token_t token; 
   
  InitScanner(); 
   while (ScanOneToken(stdin, &token) != T_END)  
    ; // this is where you would process each token 
  return 0; 
} 
 
static void InitScanner() 
{ 
  create_reserved_table();  // table maps reserved words to token type 
  insert_reserved("WHILE", T_WHILE) 
  insert_reserved("IF", T_IF) 
  insert_reserved("RETURN", T_RETURN) 
  .... 
} 
 
static int ScanOneToken(FILE *fp, struct token_t *token) 
{ 
  int i, ch, nextch; 
   
  ch = getc(fp);    // read next char from input stream 
  while (isspace(ch))    // if necessary, keep reading til non-space char 
    ch = getc(fp);    // (discard any white space) 
     
  switch(ch) { 
    case '/':    // could either begin comment or T_DIVIDE op 
      nextch = getc(fp); 
      if (nextch == '/' || nextch == '*') 
        ; // here you would skip over the comment 
      else  
        ungetc(nextch, fp); // fall-through to single-char token case 
         
    case ';': case ',': case '=':  // ... and other single char tokens  
      token->type = ch; // ASCII value is used as token type 
      return ch;     // ASCII value used as token type 
       
    case 'A': case 'B': case 'C':   // ... and other upper letters 
      token->val.stringValue[0] = ch;   
      for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase 
        token->val.stringValue[i] = ch; 
      ungetc(ch, fp);   
      token->val.stringValue[i] = '\0';  // lookup reserved word 
      token->type = lookup_reserved(token->val.stringValue); 
      return token->type; 
       
    case 'a': case 'b': case 'c':  // ... and other lower letters 
      token->type = T_IDENTIFIER; 
      token->val.stringValue[0] = ch; 
      for (i = 1; islower(ch = getc(fp)); i++)  

Scanning: identifier

  3  

struct token_t { 
  int type;                  // one of the token codes from above 
  union { 
    char stringValue[256];   // holds lexeme value if string/identifier 
    int intValue;            // holds lexeme value if integer 
    double doubleValue;      // holds lexeme value if double 
  } val; 
}; 
 
int main(int argc, char *argv[]) 
{ 
  struct token_t token; 
   
  InitScanner(); 
   while (ScanOneToken(stdin, &token) != T_END)  
    ; // this is where you would process each token 
  return 0; 
} 
 
static void InitScanner() 
{ 
  create_reserved_table();  // table maps reserved words to token type 
  insert_reserved("WHILE", T_WHILE) 
  insert_reserved("IF", T_IF) 
  insert_reserved("RETURN", T_RETURN) 
  .... 
} 
 
static int ScanOneToken(FILE *fp, struct token_t *token) 
{ 
  int i, ch, nextch; 
   
  ch = getc(fp);    // read next char from input stream 
  while (isspace(ch))    // if necessary, keep reading til non-space char 
    ch = getc(fp);    // (discard any white space) 
     
  switch(ch) { 
    case '/':    // could either begin comment or T_DIVIDE op 
      nextch = getc(fp); 
      if (nextch == '/' || nextch == '*') 
        ; // here you would skip over the comment 
      else  
        ungetc(nextch, fp); // fall-through to single-char token case 
         
    case ';': case ',': case '=':  // ... and other single char tokens  
      token->type = ch; // ASCII value is used as token type 
      return ch;     // ASCII value used as token type 
       
    case 'A': case 'B': case 'C':   // ... and other upper letters 
      token->val.stringValue[0] = ch;   
      for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase 
        token->val.stringValue[i] = ch; 
      ungetc(ch, fp);   
      token->val.stringValue[i] = '\0';  // lookup reserved word 
      token->type = lookup_reserved(token->val.stringValue); 
      return token->type; 
       
    case 'a': case 'b': case 'c':  // ... and other lower letters 
      token->type = T_IDENTIFIER; 
      token->val.stringValue[0] = ch; 
      for (i = 1; islower(ch = getc(fp)); i++)  
  4  

        token->val.stringValue[i] = ch; // gather lowercase 
      ungetc(ch, fp);  
      token->val.stringValue[i] = '\0'; 
      if (lookup_symtab(token->val.stringValue) == NULL) 
        add_symtab(token->val.stringValue); // get symbol for ident 
      return T_IDENTIFIER; 
 
    case '0': case '1': case '2': case '3':  //....  and other digits 
      token->type = T_INTEGER; 
      token->val.intValue = ch - '0';     
      while (isdigit(ch = getc(fp))) // convert digit char to number 
        token->val.intValue = token->val.intValue * 10 + ch - '0'; 
      ungetc(ch, fp);    
      return T_INTEGER; 
 
    case EOF: 
      return T_END; 
 
    default:    // anything else is not recognized 
      token->val.intValue = ch; 
      token->type = T_UNKNOWN; 
      return T_UNKNOWN; 
  } 
} 
 
The mythical source language tokenized by the above scanner requires that reserved 
words be in all upper case and identifiers in all lower case.  This convenient feature 
makes it easy for the scanner to choose which path to pursue after reading just one 
character.  It is sometimes necessary to design the scanner to "look ahead" before 
deciding what path to follow— notice the handling for the '/' character which peeks at 
the next character to check whether the first slash is followed by another slash or star 
which indicates the beginning of a comment.  If not, the extra character is pushed back 
onto the input stream and the token is interpreted as the single char operator for 
division. 
 
Loop-and-switch scanners are sometimes called ad hoc scanners, indicating their design 
and purpose of solving a specific instance rather a general problem.  For a sufficiently 
reasonable set of token types, a hand coded, loop and switch scanner might be all that’s 
needed— it requires no other tools.  The gcc front-end uses an ad hoc scanner, in fact. On 
the other hand, gcc’s C lexer is over 2,500 lines of code; verifying that such an amount of 
code is correct is much harder to justify if your lexer does not see the extent of use that 
gcc’s front-end experiences. 
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Example of an ad-hoc lexical analyser

Scanning: number

  4  

        token->val.stringValue[i] = ch; // gather lowercase 
      ungetc(ch, fp);  
      token->val.stringValue[i] = '\0'; 
      if (lookup_symtab(token->val.stringValue) == NULL) 
        add_symtab(token->val.stringValue); // get symbol for ident 
      return T_IDENTIFIER; 
 
    case '0': case '1': case '2': case '3':  //....  and other digits 
      token->type = T_INTEGER; 
      token->val.intValue = ch - '0';     
      while (isdigit(ch = getc(fp))) // convert digit char to number 
        token->val.intValue = token->val.intValue * 10 + ch - '0'; 
      ungetc(ch, fp);    
      return T_INTEGER; 
 
    case EOF: 
      return T_END; 
 
    default:    // anything else is not recognized 
      token->val.intValue = ch; 
      token->type = T_UNKNOWN; 
      return T_UNKNOWN; 
  } 
} 
 
The mythical source language tokenized by the above scanner requires that reserved 
words be in all upper case and identifiers in all lower case.  This convenient feature 
makes it easy for the scanner to choose which path to pursue after reading just one 
character.  It is sometimes necessary to design the scanner to "look ahead" before 
deciding what path to follow— notice the handling for the '/' character which peeks at 
the next character to check whether the first slash is followed by another slash or star 
which indicates the beginning of a comment.  If not, the extra character is pushed back 
onto the input stream and the token is interpreted as the single char operator for 
division. 
 
Loop-and-switch scanners are sometimes called ad hoc scanners, indicating their design 
and purpose of solving a specific instance rather a general problem.  For a sufficiently 
reasonable set of token types, a hand coded, loop and switch scanner might be all that’s 
needed— it requires no other tools.  The gcc front-end uses an ad hoc scanner, in fact. On 
the other hand, gcc’s C lexer is over 2,500 lines of code; verifying that such an amount of 
code is correct is much harder to justify if your lexer does not see the extent of use that 
gcc’s front-end experiences. 
 

Scanning: EOF and default

  4  

        token->val.stringValue[i] = ch; // gather lowercase 
      ungetc(ch, fp);  
      token->val.stringValue[i] = '\0'; 
      if (lookup_symtab(token->val.stringValue) == NULL) 
        add_symtab(token->val.stringValue); // get symbol for ident 
      return T_IDENTIFIER; 
 
    case '0': case '1': case '2': case '3':  //....  and other digits 
      token->type = T_INTEGER; 
      token->val.intValue = ch - '0';     
      while (isdigit(ch = getc(fp))) // convert digit char to number 
        token->val.intValue = token->val.intValue * 10 + ch - '0'; 
      ungetc(ch, fp);    
      return T_INTEGER; 
 
    case EOF: 
      return T_END; 
 
    default:    // anything else is not recognized 
      token->val.intValue = ch; 
      token->type = T_UNKNOWN; 
      return T_UNKNOWN; 
  } 
} 
 
The mythical source language tokenized by the above scanner requires that reserved 
words be in all upper case and identifiers in all lower case.  This convenient feature 
makes it easy for the scanner to choose which path to pursue after reading just one 
character.  It is sometimes necessary to design the scanner to "look ahead" before 
deciding what path to follow— notice the handling for the '/' character which peeks at 
the next character to check whether the first slash is followed by another slash or star 
which indicates the beginning of a comment.  If not, the extra character is pushed back 
onto the input stream and the token is interpreted as the single char operator for 
division. 
 
Loop-and-switch scanners are sometimes called ad hoc scanners, indicating their design 
and purpose of solving a specific instance rather a general problem.  For a sufficiently 
reasonable set of token types, a hand coded, loop and switch scanner might be all that’s 
needed— it requires no other tools.  The gcc front-end uses an ad hoc scanner, in fact. On 
the other hand, gcc’s C lexer is over 2,500 lines of code; verifying that such an amount of 
code is correct is much harder to justify if your lexer does not see the extent of use that 
gcc’s front-end experiences. 
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Flex

flex is a free implementation of the Unix lex program

flex implements what we have seen:
I It takes regular expressions as input
I It generates a combined NFA
I It converts it to an equivalent DFA
I It minimizes the automaton as much as possible
I It generates C code that implements it
I It handles conflict with the longest matching prefix principles and an

preference order on the tokens.

More information
I http://flex.sourceforge.net/manual/
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Input file

Input files are structured as follows:

%{

Declarations

%}

Definitions

%%

Rules

%%

User subroutines

Declarations and User subroutines are copied without modification
to the generated C file.

Definitions specify options and name definition (to simplify the rules)

Rules: specify the patterns for the tokens to be recognized
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Rules

In the form:
pattern1 action1

pattern2 action2

...

Patterns are defined as regular expressions. Actions are blocks of c
code.

When a sequence is read that matches the pattern, the c code of
the action is executed

Examples:

[0-9]+ {printf("This is a number");}

[a-z]+ {printf("This is symbol");}
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Regular expressions

Many shortcut notations are permitted in regular expressions:
I [], -, +, *, ?: as defined previously
I .: a dot matches any character (except newline)
I [^x]: matches the complement of the set of characters in x (ex: all

non-digit characters [^0-9]).
I x{n,m}: x repeated between n and m times
I "x": matches x even if x contains special characters (ex: "x*"

matches x followed by a star).
I {name}: replace with the pattern defined earlier in the definition

section of the input file
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Interacting with the scanner

User subroutines and action may interact with the generated scanner
through global variables:

I yylex: scan tokens from the global input file yyin (defaults to
stdin). Continues until it reaches the end of the file or one of its
actions executes a return statement.

I yytext: a null-terminated string (of length yyleng) containing the
text of the lexeme just recognized.

I yylval: store the attributes of the token
I yylloc: location of the tokens in the input file (line and column)
I . . .
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Example 1: hiding numbers

hide-digits.l:

%%

[0-9]+ printf("?");

. ECHO;

To build and run the program:

% flex hide-digits.l

% gcc -o hide-digits lex.yy.c ll

% ./hide-digits
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Example 2: wc

count.l:
%{

int numChars = 0, numWords = 0, numLines = 0;

%}

%%

\n {numLines++; numChars++;}

[^ \t\n]+ {numWords++; numChars += yyleng;}

. {numChars++;}

%%

int main() {

yylex();

printf("%d\t%d\t%d\n", numChars, numWords, numLines);

}

To build and run the program:

% flex count.l

% gcc -o count lex.yy.c ll

% ./count < count.l
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Example 3: typical compiler
     

 
     
      
       

 

    
   

  
  
  

      
        

 
 
 
 
 

 
   

  

 

       
   
   
   

     
        
      
      
       
    
    
    

         
       

       
      
  

 

         
       

 

          

Lexical analysis 98



Example 3: typical compiler

User defined subroutines
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Part 3

Syntax analysis
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Outline

1. Introduction

2. Context-free grammar

3. Top-down parsing

4. Bottom-up parsing
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Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code
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Syntax analysis

    

  
               

           
           

           
             

          

      
              

              
             

              
           

           
               

           
               

            

 
 

        

  
 

 
 

           
         

           
            

 
            

           
             
                
               

 
     

 
    

Goals:
I recombine the tokens provided by the lexical analysis into a structure

(called a syntax tree)
I Reject invalid texts by reporting syntax errors.

Like lexical analysis, syntax analysis is based on
I the definition of valid texts based on some formal languages,
I the derivation of an algorithm to detect valid words from this

language

Formal language: context-free grammars

Two main algorithm families: Top-down parsing and Bottom-up
parsing
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Example

  

w h i l e ( i  < z ) \n \t + i p ;

while (ip < z)
    ++ip;

p + +

T_While ( T_Ident < T_Ident ) ++ T_Ident

ip z ip

(Keith Schwarz)
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Example

  

w h i l e ( i  < z ) \n \t + i p ;

while (ip < z)
    ++ip;

p + +

T_While ( T_Ident < T_Ident ) ++ T_Ident

ip z ip

While

++

Ident

<

Ident Ident

ip z ip

(Keith Schwarz)
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Reminder: grammar
A grammar is a 4-tuple G = (V ,Σ,R, S), where:

I V is an alphabet,
I Σ ⊆ is the set of terminal symbols (V − Σ is the set of nonterminal

symbols),
I R ⊆ (V + × V ∗) is a finite set of production rules
I S ∈ V − Σ is the start symbol.

Notations:
I Nonterminal symbols are represented by uppercase letter: A,B,. . .
I Terminal symbols are represented by lowercase letters: a,b,. . .
I Start symbol written as S
I Empty word: ε
I A rule (α, β) ∈ R : α→ β
I Rule combination: A→ α|β

Exemple: Σ = {a, b, b}, V − Σ = {S ,R}, R =

S → R

S → aSc

R → ε

R → RbR
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Reminder: derivation and language

Definitions:

v can be derived in one step from u by G (noted v ⇒ u) iff
u = xu′y , v = xv ′y , and u′ → v ′

v can be derived in several steps from u by G (noted v
∗⇒ u) iff

∃k ≥ 0 and v0 . . . vk ∈ V + such that u = v0, v = vk , vi ⇒ vi+1 for
0 ≤ i < k

The language generated by a grammar G is the set of words that
can be derived from the start symbol:

L = {w ∈ Σ∗|S ∗⇒ w}

Example: derivation of aabcc from the previous grammar

T ⇒ aT c ⇒ aaT cc ⇒ aaRcc ⇒ aaRbRcc ⇒ aabRcc ⇒ aabcc

Syntax analysis 107



Reminder: type of grammars

Chomski’s grammar hierarchy:

Type 0: free or unrestricted grammars

Type 1: context sensitive grammars
I productions of the form uXw → uvw , where u, v , w are arbitrary

strings of symbols in V , with v non-null, and X a single nonterminal

Type 2: context-free grammars (CFG)
I productions of the form X → v where v is an arbitrary string of

symbols in V , and X a single nonterminal.

Type 3: regular grammars
I Productions of the form X → a, X → aY or X → ε where X and Y

are nonterminals and a is a terminal (equivalent to regular expressions
and finite state automata)
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Context-free grammars

Regular languages are too limited for representing programming
languages.

Examples of languages not representable by a regular expression:
I L = {anbn|n ≥ 0}
I Balanced parentheses

L = {ε, (), (()), ()(), ((())), (())() . . .}
I Scheme programs

L = {1, 2, 3, . . . , (lambda(x)(+x1))}

Context-free grammars are typically used for describing
programming language syntaxes.

I They are sufficient for most language
I They lead to efficient parsing algorithms
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Context-free grammars for programming languages

Nonterminals of the grammars are typically the token derived by the
lexical analysis (in bold in rules)

Divide the language into several syntactic categories (sub-languages)

Common syntactic categories
I Expressions: calculation of values
I Statements: express actions that occur in a particular sequence
I Declarations: express properties of names used in other parts of the

program

Exp → Exp + Exp

Exp → Exp − Exp

Exp → Exp ∗ Exp

Exp → Exp/Exp

Exp → num

Exp → id

Exp → (Exp)

Stat → id := Exp

Stat → Stat; Stat

Stat → if Exp then Stat Else Stat

Stat → if Exp then Stat
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Derivation for context-free grammar

Like for a general grammar

Because there is only one nonterminal in the LHS of each rule, their
order of application does not matter

Two particular derivations
I left-most: always expand first the left-most nonterminal

(important for parsing)
I right-most: always expand first the right-most nonterminal

(canonical derivation)

Examples

S → aTb|c
T → cSS |S

w = accacbb

Left-most derivation:
S ⇒ aTb ⇒ acSSb ⇒ accSb ⇒
accaTbb ⇒ accaSbb ⇒ accacbb

Right-most derivation:
S ⇒ aTb ⇒ acSSb ⇒ acSaTbb ⇒
acSaSbb ⇒ acSacbb ⇒ accacbb
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Parse tree

A parse tree abstracts the order of application of the rules
I Each interior node represents the application of a production
I For a rule A→ X1X2 . . .Xk , the interior node is labeled by A and the

children from left to right by X1,X2, . . . ,Xk .
I Leaves are labeled by nonterminals or terminals and read from left to

right represent a string generated by the grammar

A derivation encodes how to produce the input

A parse tree encodes the structure of the input

Syntax analysis = recovering the parse tree from the tokens
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Parse trees

S → aTb|c
T → cSS |S

w = accacbb

Left-most derivation:
S ⇒ aTb ⇒ acSSb ⇒ accSb ⇒
accaTbb ⇒ accaSbb ⇒ accacbb

Right-most derivation:
S ⇒ aTb ⇒ acSSb ⇒ acSaTbb ⇒
acSaSbb ⇒ acSacbb ⇒ accacbb

S

a T b

c S S

c a T b

S

c

instr instr

if ( expr ) instr if ( expr ) instr else instr

y<10 a=1 a=0 y<10 a=1

x>10 if ( expr ) instr else instr if ( expr ) instr a=0x>10
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Parse tree

T → R

T → aTc

R → ε

R → RbR

3.3. DERIVATION 61
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Figure 3.7: Syntax tree for the string aabbbcc using grammar 3.4
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Figure 3.8: Alternative syntax tree for the string aabbbcc using grammar 3.4
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Figure 3.8: Alternative syntax tree for the string aabbbcc using grammar 3.4
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Ambiguity

The order of derivation does not matter but the chosen production
rules does

Definition: A CFG is ambiguous if there is at least one string with
two or more parse trees

Ambiguity is not problematic when dealing with flat strings. It is
when dealing with language semantics

Exp

2 3

4

⇤

+

ExpExp

ExpExp

Exp

2

3 4

⇤

+ ExpExp

ExpExp

6=
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Detecting and solving Ambiguity

There is no mechanical way to determine if a grammar is
(un)ambiguous (this is an undecidable problem)

In most practical cases however, it is easy to detect and prove
ambiguity.
E.g., any grammar containting N → NαN is ambiguous (two parse
trees for NαNαN).

How to deal with ambiguity?
I Modify the grammar to make it unambiguous
I Handle these ambiguity in the parsing algorithm

Two common sources of ambiguity in programming languages
I Expression syntax (operator precedences)
I Dangling else
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Operator precedence

This expression grammar is ambiguous

Exp → Exp + Exp

Exp → Exp − Exp

Exp → Exp ∗ Exp

Exp → Exp/Exp

Exp → num

Exp → (Exp)

(it contains N → NαN)

Parsing of 2 + 3 ∗ 4

Exp

2 3

4

⇤

+

ExpExp

ExpExp

Exp

2

3 4

⇤

+ ExpExp

ExpExp
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Operator associativity

Types of operator associativity:
I An operator ⊕ is left-associative if a⊕ b ⊕ c must be evaluated from

left to right, i.e., as (a⊕ b)⊕ c
I An operator ⊕ is right-associative if a⊕ b ⊕ c must be evaluated

from right to left, i.e., as a⊕ (b ⊕ c)
I An operator ⊕ is non-associative if expressions of the form a⊕ b ⊕ c

are not allowed

Examples:
I − and / are typically left-associative
I + and ∗ are mathematically associative (left or right). By convention,

we take them left-associative as well
I List construction in functional languages is right-associative
I Arrows operator in C is right-associative (a->b->c is equivalent to

a->(b->c))
I In Pascal, comparison operators are non-associative (you can not

write 2 < 3 < 4)
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Rewriting ambiguous expression grammars

Let’s consider the following ambiguous grammar:

E → E ⊕ E

E → num

If ⊕ is left-associative, we rewrite it as a left-recursive (a recursive
reference only to the left). If ⊕ is right-associative, we rewrite it as
a right-recursive (a recursive reference only to the right).

⊕ left-associative

E → E ⊕ E ′

E → E ′

E ′ → num

⊕ right-associative

E → E ′ ⊕ E

E → E ′

E ′ → num
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Mixing operators of different precedence levels

Introduce a different nonterminal for each precedence level

Ambiguous

Exp → Exp + Exp

Exp → Exp − Exp

Exp → Exp ∗ Exp

Exp → Exp/Exp

Exp → num

Exp → (Exp)

Non-ambiguous

Exp → Exp + Exp2

Exp → Exp − Exp2

Exp → Exp2

Exp2 → Exp2 ∗ Exp3

Exp2 → Exp2/Exp3

Exp2 → Exp3

Exp3 → num

Exp3 → (Exp)

Parse tree for 2 + 3 ∗ 4
3.5. OTHER SOURCES OF AMBIGUITY 67

Exp
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�
@
@

Exp + Exp2
�

�
@
@

Exp2 Exp2 * Exp3

Exp3 Exp3 4

2 3

Figure 3.12: Syntax tree for 2+3*4 using grammar 3.11

parse, for example,

if p then if q then s1 else s2

According to the grammar, the else can equally well match either if. The usual
convention is that an else matches the closest not previously matched if, which,
in the example, will make the else match the second if.

How do we make this clear in the grammar? We can treat if, then and else
as a kind of right-associative operators, as this would make them group to the right,
making an if-then match the closest else. However, the grammar transforma-
tions shown in section 3.4 can not directly be applied to grammar 3.3, as the pro-
ductions for conditionals do not have the right form.

Instead we use the following observation: When an if and an else match, all
ifs that occur between these must have matching elses. This can easily be proven
by assuming otherwise and concluding that this leads to a contradiction.

Hence, we make two nonterminals: One for matched (i.e. with else-part)
conditionals and one for unmatched (i.e. without else-part) conditionals. The
result is shown in grammar 3.13. This grammar also resolves the associativity of
semicolon (right) and the precedence of if over semicolon.

An alternative to rewriting grammars to resolve ambiguity is to use an ambigu-
ous grammar and resolve conflicts by using precedence rules during parsing. We
shall look into this in section 3.16.

All cases of ambiguity must be treated carefully: It is not enough that we elim-
inate ambiguity, we must do so in a way that results in the desired structure: The
structure of arithmetic expressions is significant, and it makes a difference to which
if an else is matched.

Suggested exercises: 3.3 (focusing now on making the grammar unambiguous).
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Dangling else

Else part of a condition is typically optional

Stat → if Exp then Stat Else Stat

Stat → if Exp then Stat

How to match if p then if q then s1 else s2?

Convention: else matches the closest not previously matched if.

Unambiguous grammar:

Stat → Stat|Unmatched

Matched → if Exp then Matched else Matched

Matched → ”Any other statement”

Unmatched → if Exp then Stat

Unmatched → if Exp then Matched else Unmatched
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End-of-file marker
Parsers must read not only terminal symbols such as +,−, num ,
but also the end-of-file
We typically use $ to represent end of file
If S is the start symbol of the grammar, then a new start symbol S ′

is added with the following rules S ′ → S$.

S → Exp$

Exp → Exp + Exp2

Exp → Exp − Exp2

Exp → Exp2

Exp2 → Exp2 ∗ Exp3

Exp2 → Exp2/Exp3

Exp2 → Exp3

Exp3 → num

Exp3 → (Exp)
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Non-context free languages

Some syntactic constructs from typical programming languages
cannot be specified with CFG

Example 1: ensuring that a variable is declared before its use
I L1 = {wcw |w is in (a|b)∗} is not context-free
I In C and Java, there is one token for all identifiers

Example 2: checking that a function is called with the right number
of arguments

I L2 = {anbmcndm|n ≥ 1 and m ≥ 1} is not context-free
I In C, the grammar does not count the number of function arguments

stmt → id (expr list)

expr list → expr list, expr

| expr

These constructs are typically dealt with during semantic analysis

Syntax analysis 123



Backus-Naur Form

A text format for describing context-free languages

We ask you to provide the source grammar for your project in this
format

Exemple:

More information:
http://en.wikipedia.org/wiki/Backus-Naur_form
http://www.montefiore.ulg.ac.be/~botta/info0085-1/
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Outline

1. Introduction

2. Context-free grammar

3. Top-down parsing

4. Bottom-up parsing
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Syntax analysis

Goals:
I Checking that a program is accepted by the context-free grammar
I Building the parse tree
I Reporting syntax errors

Two ways:
I Top-down: from the start symbol to the word
I Bottom-up: from the word to the start symbol
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Top-down and bottom-up: example

Grammar:

S → AB

A → aA|ε
B → b|bB

Top-down parsing of aaab
S
AB S → AB
aAB A→ aA
aaAB A→ aA
aaaAB A→ aA
aaaεB A→ ε
aaab B → b

Bottom-up parsing of aaab
aaab
aaaεb (insert ε)
aaaAb A→ ε
aaAb A→ aA
aAb A→ aA
Ab A→ aA
AB B → b
S S → AB
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A naive top-down parser

A very naive parsing algorithm:
I Generate all possible parse trees until you get one that matches your

input
I To generate all parse trees:

1. Start with the root of the parse tree (the start symbol of the
grammar)

2. Choose a non-terminal A at one leaf of the current parse tree
3. Choose a production having that non-terminal as LHS, eg.,

A→ X1X2 . . .Xk

4. Expand the tree by making X1,X2,. . . ,Xk , the children of A.
5. Repeat at step 2 until all leaves are terminals
6. Repeat the whole procedure by changing the productions chosen at

step 3

( Note: the choice of the non-terminal in Step 2 is irrevelant for a
context-free grammar)

This algorithm is very inefficient, does not always terminate, etc.
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Top-down parsing with backtracking

Modifications of the previous algorithm:

1. Depth-first development of the parse tree (corresponding to a
left-most derivation)

2. Process the terminals in the RHS during the development of the tree,
checking that they match the input

3. If they don’t at some step, stop expansion and restart at the previous
terminal with another productions rules (backtracking)

Depth-first can be implemented by storing the unprocessed symbols
on a stack

Because of the left-most derivation, the inputs can be processed
from left to right
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Backtracking example

S → bab

S → bA

A → d

A → cA

w = bcd

Stack Inputs Action

S bcd Try S → bab
bab bcd match b

ab cd dead-end, backtrack
S bcd Try S → bA

bA bcd match b
A cd Try A→ d
d cd dead-end, backtrack
A cd Try A→ cA

cA cd match c
A d Try A→ d
d d match d

Success!
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Top-down parsing with backtracking

General algorithm (to match a word w):
Create a stack with the start symbol
X = pop()
a = getnexttoken()
while (True)

if (X is a nonterminal)
Pick next rule to expand X → Y1Y2 . . .Yk

Push Yk ,Yk−1, . . . ,Y1 on the stack
X = pop()

elseif (X = = $ and a = = $)
Accept the input

elseif (X = = a)
a = getnexttoken()
X = pop()

else
Backtrack

Ok for small grammars but still untractable and very slow for large
grammars

Worst-case exponential time in case of syntax error
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Another example

S → aSbT

S → cT

S → d

T → aT

T → bS

T → c

w = accbbadbc

Stack Inputs Action
S accbbadbc Try S → aSbT

aSbT accbbadbc match a
SbT accbbadbc Try S → aSbT

aSbTbT accbbadbc match a
SbTbT ccbbadbc Try S → cT

cTbTbT ccbbadbc match c
TbTbT cbbadbc Try T → c
cbTbT cbbadbc match cb

TbT badbc Try T → bS
bSbT badbc match b

SbT adbc Try S → aSbT
aSbT adbc match a

. . . . . . . . .
c c match c

Success!
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Predictive parsing

Predictive parser:
I In the previous example, the production rule to apply can be predicted

based solely on the next input symbol and the current nonterminal
I Much faster than backtracking but this trick works only for some

specific grammars

Grammars for which top-down predictive parsing is possible by
looking at the next symbol are called LL(1) grammars:

I L: left-to-right scan of the tokens
I L: leftmost derivation
I (1): One token of lookahead

Predicted rules are stored in a parsing table M:
I M[X , a] stores the rule to apply when the nonterminal X is on the

stack and the next input terminal is a
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Example: parse table

  

LL(1) Parse Tables
S → E$
E → int
E → (E Op E)
Op → +
Op → *

int ( ) + * $

S

E

Op

E$ E$

int (E Op E)

*+

(Keith Schwarz)
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Example: successfull parsing

  

1. S → E$
2. E → int
3. E → (E Op E)
4. Op → +
5. Op → -

(int + (int * int))$

(int + (int * int))$

(int + (int * int))$

int + (int * int))$

int + (int * int))$

+ (int * int))$

+ (int * int))$

(int * int))$

(int * int))$

int * int))$

int * int))$int * int))$

* int))$

* int))$

int))$

int))$

))$

)$

$

S
E$

(E Op E)$
E Op E)$
int Op E)$

Op E)$
+ E)$
E)$

(E Op E))$
E Op E))$
int Op E))$

Op E))$
* E))$
E))$
int))$

))$

)$

$

int ( ) + * $

S

E

Op

1 1

2 3

54

Predictive Top-Down Parsing

(Keith Schwarz)
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Example: erroneous parsing

  

1. S → E$
2. E → int
3. E → (E Op E)
4. Op → +
5. Op → -

(int (int))$

(int (int))$

(int (int))$

int (int))$

int (int))$

(int))$

S
E$

(E Op E)$
E Op E)$
int Op E)$

Op E)$

int ( ) + * $

S

E

Op

1 1

2 3

54

Error Detection II

(Keith Schwarz)
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Table-driven predictive parser

(Dragonbook)
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Table-driven predictive parser

Create a stack with the start symbol
X = pop()
a = getnexttoken()
while (True)

if (X is a nonterminal)
if (M[X , a] = = NULL)

Error
elseif (M[X , a] = = X → Y1Y2 . . .Yk)

Push Yk ,Yk−1, . . . ,Y1 on the stack
X = pop()

elseif (X = = $ and a = = $)
Accept the input

elseif (X = = a)
a = getnexttoken()
X = pop()

else
Error
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LL(1) grammars and parsing

Three questions we need to address:

How to build the table for a given grammars?

How to know if a grammar is LL(1)?

How to change a grammar to make it LL(1)?
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Building the table

It is useful to define three functions
(with A a nonterminal and α any sequence of grammar symbols):

I Nullable(α) is true if α
∗⇒ ε

I First(α) returns the set of terminals c such that α
∗⇒ cγ for some

(possibly empty) sequence γ of grammar symbols
I Follow(A) returns the set of terminals a such that S ⇒ αAaβ, where
α and β are (possibly empty) sequences of grammar symbols

    

            

                 
                

          
              

               
                

                
                

             
              

           
            

             

          

                      
                   

                   
                  

              
              

  

             

                 
                

                 
                
        

           
         

                
  

(c ∈ First(A) and a ∈ Follow(A))
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Building the table from First, Follow , and Nullable

To construct the table:

Start with the empty table

For each production A→ α:
I add A→ α to M[A, a] for each terminal a in First(α)
I If Nullable(α), add A→ α to M[A, a] for each a in Follow(A)

First rule is obvious. Illustration of the second rule:

S → Ab

A → c

A → ε

Nullable(A) = True

First(A) = {c}
Follow(A) = {b}

M[A, b] = A→ ε
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LL(1) grammars

Three situations:
I M[A, a] is empty: no production is appropriate. We can not parse the

sentence and have to report a syntax error
I M[A, a] contains one entry: perfect !
I M[A, a] contains two entries: the grammar is not appropriate for

predictive parsing (with one token lookahead)

Definition: A grammar is LL(1) if its parsing table contains at most
one entry in each cell or, equivalently, if for all production pairs
A→ α|β

I First(α) ∩ First(β) = ∅,
I Nullable(α) and Nullable(β) are not both true,
I if Nullable(β), then First(α) ∩ Follow(A) = ∅

Example of a non LL(1) grammar:

S → Ab

A → b

A → ε
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Computing Nullable

Algorithm to compute Nullable for all grammar symbols

Initialize Nullable to False.
repeat

for each production X → Y1Y2 . . .Yk

if Y1 . . .Yk are all nullable (or if k = 0)
Nullable(X ) = True

until Nullable did not change in this iteration.

Algorithm to compute Nullable for any string α = X1X2 . . .Xk :

if (X1 . . .Xk are all nullable)
Nullable(α) = True

else
Nullable(α) = False

Syntax analysis 143



Computing First

Algorithm to compute First for all grammar symbols

Initialize First to empty sets. for each terminal Z
First(Z ) = {Z}

repeat
for each production X → Y1Y2 . . .Yk

for i = 1 to k
if Y1. . . Yi−1 are all nullable (or i = 1)

First(X ) = First(X ) ∪ First(Yi )
until First did not change in this iteration.

Algorithm to compute First for any string α = X1X2 . . .Xk :

Initialize First(α) = ∅
for i = 1 to k

if Y1. . . Yi−1 are all nullable (or i = 1)
First(α) = First(α) ∪ First(Xi )
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Computing Follow

To compute Follow for all nonterminal symbols

Initialize Follow to empty sets.
repeat

for each production X → Y1Y2 . . .Yk

for i = 1 to k , for j = i + 1 to k
if Yi+1. . . Yk are all nullable (or i = k)

Follow(Yi ) = Follow(Yi ) ∪ Follow(X )
if Yi+1. . . Yj−1 are all nullable (or i + 1 = j)

Follow(Yi ) = Follow(Yi ) ∪ First(Yj)
until Follow did not change in this iteration.
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Example
Compute the parsing table for the following grammar:

S → E $

E → TE ′

E ′ → +TE ′

E ′ → −TE ′

E ′ → ε

T → FT ′

T ′ → ∗FT ′

T ′ → /FT ′

T ′ → ε

F → id

F → num

F → (E )
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Example

Nonterminals Nullable First Follow

S False {(, id , num } ∅
E False {(, id , num } {), $}
E’ True {+,−} {), $}
T False {(, id , num } {),+,−, $}
T’ True {∗, /} {),+,−, $}
F False {(, id , num } {), ∗, /,+,−, $}

+ ∗ id ( ) $

S S → E$ S → E$
E E → TE ′ E → TE ′

E’ E ′ → +TE ′ E ′ → ε E ′ → ε
T T → FT ′ T → FT ′

T’ T ′ → ε T ′ → ∗FT ′ T ′ → ε T ′ → ε
F F → id F → (E)

(−,/, and num are treated similarly)
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LL(1) parsing summary so far

Construction of a LL(1) parser from a CFG grammar

Eliminate ambiguity

Add an extra start production S ′ → S$ to the grammar

Calculate First for every production and Follow for every
nonterminal

Calculate the parsing table

Check that the grammar is LL(1)

Next course:

Transformations of a grammar to make it LL(1)

Recursive implementation of the predictive parser

Bottom-up parsing techniques
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Transforming a grammar for LL(1) parsing

Ambiguous grammars are not LL(1) but unambiguous grammars are
not necessarily LL(1)

Having a non-LL(1) unambiguous grammar for a language does not
mean that this language is not LL(1).

But there are languages for which there exist unambiguous
context-free grammars but no LL(1) grammar.

We will see two grammar transformations that improve the chance
to get a LL(1) grammar:

I Elimination of left-recursion
I Left-factorization
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Left-recursion

The following expression grammar is unambiguous but it is not
LL(1):

Exp → Exp + Exp2

Exp → Exp − Exp2

Exp → Exp2

Exp2 → Exp2 ∗ Exp3

Exp2 → Exp2/Exp3

Exp2 → Exp3

Exp3 → num

Exp3 → (Exp)

Indeed, First(α) is the same for all RHS α of the productions for
Exp et Exp2

This is a consequence of left-recursion.
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Left-recursion
Recursive productions are productions defined in terms of
themselves. Examples: A→ Ab ou A→ bA.
When the recursive nonterminal is at the left (resp. right), the
production is said to be left-recursive (resp. right-recursive).
Left-recursive productions can be rewritten with right-recursive
productions
Example:

N → Nα1

...

N → Nαm

N → β1

...

N → βn

⇔

N → β1N ′

...

N → βnN ′

N ′ → α1N ′

...

N ′ → αmN ′

N ′ → ε
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Right-recursive expression grammar

Exp → Exp + Exp2

Exp → Exp − Exp2

Exp → Exp2

Exp2 → Exp2 ∗ Exp3

Exp2 → Exp2/Exp3

Exp2 → Exp3

Exp3 → num

Exp3 → (Exp)

⇔

Exp → Exp2Exp′

Exp′ → +Exp2Exp′

Exp′ → −Exp2Exp′

Exp′ → ε

Exp2 → Exp3Exp2′

Exp2′ → ∗Exp3Exp2′

Exp2′ → /Exp3Exp2′

Exp2′ → ε

Exp3 → num

Exp3 → (Exp)
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Left-factorisation
The RHS of these two productions have the same First set.

Stat → if Exp then Stat else Stat

Stat → if Exp then Stat

The problem can be solved by left factorising the grammar:

Stat → if Exp then Stat ElseStat

ElseStat → else Stat

ElseStat → ε

Note
I The resulting grammar is ambiguous and the parsing table will

contain two rules for M[ElseStat, else]
(because else ∈ Follow(ElseStat) and else ∈ First(else Stat))

I Ambiguity can be solved in this case by letting
M[ElseStat, else] = {ElseStat → else Stat}.
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Hidden left-factors and hidden left recursion

Sometimes, left-factors or left recursion are hidden

Examples:
I The following grammar:

A → da|acB

B → abB|daA|Af

has two overlapping productions: B → daA and B
∗⇒ daf .

I The following grammar:

S → Tu|wx

T → Sq|vvS

has left recursion on T (T
∗⇒ Tuq)

Solution: expand the production rules by substitution to make
left-recursion or left factors visible and then eliminate them
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Summary

Construction of a LL(1) parser from a CFG grammar

Eliminate ambiguity

Eliminate left recursion

left factorization

Add an extra start production S ′ → S$ to the grammar

Calculate First for every production and Follow for every
nonterminal

Calculate the parsing table

Check that the grammar is LL(1)
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Recursive implementation

From the parsing table, it is easy to implement a predictive parser
recursively (with one function per nonterminal)3.12. LL(1) PARSING 81

function parseT’() =
if next = ’a’ or next = ’b’ or next = ’$’ then

parseT() ; match(’$’)
else reportError()

function parseT() =
if next = ’b’ or next = ’c’ or next = ’$’ then

parseR()
else if next = ’a’ then

match(’a’) ; parseT() ; match(’c’)
else reportError()

function parseR() =
if next = ’c’ or next = ’$’ then

(* do nothing *)
else if next = ’b’ then

match(’b’) ; parseR()
else reportError()

Figure 3.16: Recursive descent parser for grammar 3.9

For parseR, we must choose the empty production on symbols in FOLLOW(R)
(c or $). The production R! bR is chosen on input b. Again, all other symbols
produce an error.

The function match takes as argument a symbol, which it tests for equality
with the next input symbol. If they are equal, the following symbol is read into
the variable next. We assume next is initialised to the first input symbol before
parseT’ is called.

The program in figure 3.16 only checks if the input is valid. It can easily be
extended to construct a syntax tree by letting the parse functions return the sub-trees
for the parts of input that they parse.

3.12.2 Table-driven LL(1) parsing

In table-driven LL(1) parsing, we encode the selection of productions into a table
instead of in the program text. A simple non-recursive program uses this table and
a stack to perform the parsing.

The table is cross-indexed by nonterminal and terminal and contains for each
such pair the production (if any) that is chosen for that nonterminal when that ter-
minal is the next input symbol. This decision is made just as for recursive descent
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Outline

1. Introduction

2. Context-free grammar

3. Top-down parsing

4. Bottom-up parsing
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Bottom-up parsing

A bottom-up parser creates the parse tree starting from the leaves
towards the root

It tries to convert the program into the start symbol

Most common form of bottom-up parsing: shift-reduce parsing

Syntax analysis 158



Bottom-up parsing: example

Grammar:

S → E

E → T

E → E + T

T → int

T → ( E )

Bottum-up parsing of
int + (int + int + int)

  

One View of a Bottom-Up Parse

S → E$
E → T
E → E + T
T → int
T → (E)

int + ( int + int + int ) $

T

E

T

E

T

E

T

E

T

E

S

(Keith Schwarz)
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Bottom-up parsing: example

Grammar:

S → E

E → T

E → E + T

T → int

T → ( E )

Bottum-up parsing of
int + (int + int + int):

int + (int + int + int)$
T + (int + int + int)$
E + (int + int + int)$
E + (T + int + int)$
E + (E + int + int)$
E + (E + T + int)$
E + (E + int)$
E + (E + T )$
E + (E )$
E + T $
E $
S

Top-down parsing is often done as a rightmost derivation in reverse
(There is only one if the grammar is unambiguous).
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Terminology

A Rightmost (canonical) derivation is a derivation where the
rightmost nonterminal is replaced at each step. A rightmost
derivation from α to β is noted α

∗⇒rm β.

A reduction transforms uwv to uAv if A→ w is a production

α is a right sentential form if S
∗⇒rm α avec α = βx where x is a

string of terminals.

A handle of a right sentential form γ (= αβw) is a production
A→ β and a position in γ where β may be found and replaced by A
to produce the previous right-sentential form in a rightmost
derivation of γ:

S
∗⇒rm αAw ⇒rm αβw

I Informally, a handle is a production we can reverse without getting
stuck.

I If the handle is A→ β, we will also call β the handle.
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Handle: example

Grammar:

S → E

E → T

E → E + T

T → int

T → ( E )

Bottum-up parsing of
int + (int + int + int)

int + (int + int + int)$
T + (int + int + int)$
E + (int + int + int)$
E + (T + int + int)$
E + (E + int + int)$
E + (E + T + int)$
E + (E + int)$
E + (E + T )$
E + (E )$
E + T $
E $
S

The handle is in red in each right sentential form
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Finding the handles

Bottom-up parsing = finding the handle in the right sentential form
obtained at each step

This handle is unique as soon as the grammar is unambiguous
(because in this case, the rightmost derivation is unique)

Suppose that our current form is uvw and the handle is A→ v
(getting uAw after reduction). w can not contain any nonterminals
(otherwise we would have reduced a handle somewhere in w)
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Shift/reduce parsing

Proposed model for a bottom-up parser:

Split the input into two parts:
I Left substring is our work area
I Right substring is the input we have not yet processed

All handles are reduced in the left substring

Right substring consists only of terminals

At each point, decide whether to:
I Move a terminal across the split (shift)
I Reduce a handle (reduce)
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Shift/reduce parsing: example

Grammar:

E → E + T |T
T → T ∗ F |F
F → ( E )| id

Bottum-up parsing of
id + id ∗ id

Left substring Right substring Action
$ id + id ∗ id$ Shift
$id +id ∗ id$ Reduce by F → id
$F +id ∗ id$ Reduce by T → F
$T +id ∗ id$ Reduce by E → T
$E +id ∗ id$ Shift
$E+ id ∗ id$ Shift
$E + id ∗id$ Reduce by F → id
$E + F ∗id$ Reduce by T → F
$E + T ∗id$ Shift
$E + T∗ id$ Shift
$E + T ∗ id $ Reduce by F → id
$E + T ∗ F $ Reduce by T → T ∗ F
$E + T $ Reduce by E → E + T
$E $ Accept
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Shift/reduce parsing

In the previous example, all the handles were to the far right end of
the left area (not inside)

This is convenient because we then never need to shift from the left
to the right and thus could process the input from left-to-right in
one pass.

Is it the case for all grammars? Yes !

Sketch of proof: by induction on the number of reduces
I After no reduce, the first reduction can be done at the right end of

the left area
I After at least one reduce, the very right of the left area is a

nonterminal (by induction hypothesis). This nonterminal must be
part of the next reduction, since we are tracing a rightmost derivation
backwards.
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Shift/reduce parsing

Consequence: the left area can be represented by a stack (as all
activities happen at its far right)

Four possible actions of a shift-reduce parser:

1. Shift: push the next terminal onto the stack
2. Reduce: Replace the handle on the stack by the nonterminal
3. Accept: parsing is successfully completed
4. Error: discover a syntax error and call an error recovery routine
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Shift/reduce parsing

There still remain two open questions: At each step:
I How to choose between shift and reduce?
I If the decision is to reduce, which rules to choose (i.e., what is the

handle)?

Ideally, we would like this choice to be deterministic given the stack
and the next k input symbols (to avoid backtracking), with k
typically small (to make parsing efficient)

Like for top-down parsing, this is not possible for all grammars

Possible conflicts:
I shift/reduce conflict: it is not possible to decide between shifting or

reducing
I reduce/reduce conflict: the parser can not decide which of several

reductions to make
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Shift/reduce parsing

We will see two main categories of shift-reduce parsers:

LR-parsers
I They cover a wide range of grammars
I Different variants from the most specific to the most general: SLR,

LALR, LR

Weak precedence parsers
I They work only for a small class of grammars
I They are less efficient than LR-parsers
I They are simpler to implement
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LR-parsers

LR(k) parsing: Left-to-right, Rightmost derivation, k symbols
lookahead.

Advantages:
I The most general non-backtracking shift-reduce parsing, yet as

efficient as other less general techniques
I Can detect syntactic error as soon as possible (on a left-to-right scan

of the input)
I Can recognize virtually all programming language constructs (that

can be represented by context-free grammars)
I Grammars recognized by LR parsers is a proper subset of grammars

recognized by predictive parsers (LL(k) ⊂ LR(k))

Drawbacks:
I More complex to implement than predictive (or operator precedence)

parsers

Like table-driven predictive parsing, LR parsing is based on a parsing
table.
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Structure of a LR parser
LR Parsing Algorithm 

30 

Sm 
Xm 
Sm-1 

Xm-1 
   . 
   . 
S1 

X1 
S0 

a1  ... ai  ... an $ 

Action Table 
      terminals and $ 
s 
t         four different  
a         actions 
t 
e 
s 

Goto Table 
       non-terminal 
s 
t            each item is 
a           a state number 
t 
e 
s 

 
LR Parsing Algorithm 

stack 
input 

output 
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Structure of a LR parser

A configuration of a LR parser is described by the status of its stack
and the part of the input not analysed (shifted) yet:

(s0X1s1 . . .Xmsm, aiai+1 . . . an$)

where Xi are (terminal or nonterminal) symbols, ai are terminal
symbols, and si are state numbers (of a DFA)

A configuration corresponds to the right sentential form

X1 . . .Xmai . . . an

Analysis is based on two tables:
I an action table that associates an action ACTION[s, a] to each state

s and nonterminal a.
I a goto table that gives the next state GOTO[s,A] from state s after

a reduction to a nonterminal A
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Actions of a LR-parser

Let us assume the parser is in configuration

(s0X1s1 . . .Xmsm, aiai+1 . . . an$)

(initially, the state is (s0, a1a2 . . . an$), where a1 . . . an is the input
word)

ACTION[sm, ai ] can take four values:

1. Shift s: shifts the next input symbol and then the state s on the
stack (s0X1s1 . . .Xmsm, aiai+1 . . . an)→ (s0X1s1 . . .Xmai s, ai+1 . . . an)

2. Reduce A→ β (denoted by rn where n is a production number)
I Pop 2|β| (= r) items from the stack
I Push A and s where s = GOTO[sm−r ,A]

(s0X1s1 . . .Xmsm, aiai+1 . . . an)→
(s0X1s1 . . .Xm−r sm−rAs, aiai+1 . . . an)

I Output the prediction A→ β

3. Accept: parsing is successfully completed
4. Error: parser detected an error (typically an empty entry in the action

table).
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LR-parsing algorithm

Create a stack with the start state s0

a = getnexttoken()
while (True)

s = pop()
if (ACTION[s, a] = shift t)

Push a and t onto the stack
a = getnexttoken()

elseif (ACTION[s, a] = reduce A→ β)
Pop 2|β| elements off the stack
Let state t now be the state on the top of the stack
Push GOTO[t,A] onto the stack
Output A→ β

elseif (ACTION[s, a] = accept)
break // Parsing is over

else call error-recovery routine
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Example: parsing table for the expression grammar

1. E → E + T

2. E → T

3. T → T ∗ F

4. T → F

5. F → (E )

6. F → id

(SLR) Parsing Tables for Expression Grammar 

34 

state id + * ( ) $ E T  F 

0 s5 s4 1 2 3 

1 s6 acc 

2 r2 s7 r2 r2 

3 r4 r4 r4 r4 

4 s5 s4 8 2 3 

5 r6 r6 r6 r6 

6 s5 s4 9 3 

7 s5 s4 10 

8 s6 s11 

9 r1 s7 r1 r1 

10 r3 r3 r3 r3 

11 r5 r5 r5 r5 

Action Table Goto Table 
1)   E → E+T 
2)   E → T 
3)   T → T*F 
4)   T → F 
5)   F → (E) 
6)   F → id 
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Example: LR parsing with the expression grammarActions of A (S)LR-Parser -- Example 

stack   input   action    output 
0    id*id+id$  shift 5 
0id5   *id+id$   reduce by F→id    F→id    
0F3   *id+id$   reduce by T→F    T→F    
0T2   *id+id$   shift 7 
0T2*7   id+id$   shift 5 
0T2*7id5  +id$   reduce by F→id    F→id 
0T2*7F10  +id$    reduce by T→T*F    T→T*F 
0T2   +id$   reduce by E→T    E→T 
0E1   +id$   shift 6 
0E1+6   id$   shift 5 
0E1+6id5  $   reduce by F→id    F→id 
0E1+6F3  $   reduce by T→F    T→F 
0E1+6T9  $   reduce by E→E+T    E→E+T 
0E1   $   accept 
 

35 
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Constructing the parsing tables

There are several ways of building the parsing tables, among which:
I LR(0): no lookahead, works for only very few grammars
I SLR: the simplest one with one symbol lookahead. Works with less

grammars than the next ones
I LR(1): very powerful but generate potentially very large tables
I LALR(1): tradeoff between the other approaches in terms of power

and simplicity
I LR(k), k> 1: exploit more lookahead symbols

LALR(1) is used in parser generators like Yacc

We will only see SLR in this course

Main idea of all methods: build a DFA whose states keep track of
where we are in a parse
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LR(0) item

An LR(0) item (or item for short) of a grammar G is a production of
G with a dot at some position of the body.

Example: A→ XYZ yields four items:

A→ .XYZ
A→ X .YZ
A→ XY .Z
A→ XYZ .

(A→ ε generates one item A→ .)

An item indicates how much of a production we have seen at a
given point in the parsing process.

I A→ X .YZ means we have just seen on the input a string derivable
from X (and we hope to get next YZ ).

Each state of the SLR parser will correspond to a set of LR(0) items

A particular collection of sets of LR(0) items (the canonical LR(0)
collection) is the basis for constructing SLR parsers
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Construction of the canonical LR(0) collection

The grammar G is first augmented into a grammar G ′ with a new
start symbol S ′ and a production S ′ → S where S is the start
symbol of G

We need to define two functions:
I Closure(I ): extends the set of items I when some of them have a

dot to the left of a nonterminal
I Goto(I ,X ): moves the dot past the symbol X in all items in I

These two functions will help define a DFA:
I whose states are (closed) sets of items
I whose transitions (on terminal and nonterminal symbols) are defined

by the Goto function
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Closure

Closure(I )

repeat
for any item A→ α.Xβ in I

for any production X → γ
I = I ∪ {X → .γ}

until I does not change
return I

Example:

E ′ → E
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id

Closure({E ′ → .E}) = {E ′ → .E ,

E → .E + T

E → .T

T → .T ∗ F

T → .F

F → .(E)

F → . id
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Goto

Goto(I ,X )

Set J to the empty set
for any item A→ α.Xβ in I

J = J
⋃{A→ αX .β}

return closure(J)

Example:

E ′ → E
E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id

I0 = {E ′ → .E ,

E → .E + T

E → .T

T → .T ∗ F

T → .F

F → .(E)

F → . id

goto(I0,E) = {E ′ → E .,E → E .+ T}
goto(I0,T ) = {E → T .,T → T . ∗ F}
goto(I0,F ) = {T → F .}
goto(I0,

′ (′) = Closure({F → (.E)})
= {F → (.E)} ∪ (I0 \ {E ′ → E})

goto(I0, id) = {F → id.}
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Construction of the canonical collection

C = {closure({S ′ → .S})
repeat

for each item set I in C
for each item A→ α.Xβ in I

C = C ∪Goto(I ,X )
until C did not change in this iteration
return C

Collect all sets of items reachable from the initial state by one or
several applications of goto.

Item sets in C are the state of a DFA, goto is its transition function
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Example

Example: parsing table for the expression grammar

1. E ! E + T

2. E ! T

3. T ! T ⇤ F

4. T ! F

5. F ! (E )

6. F ! id

(SLR) Parsing Tables for Expression Grammar 

34 

state id + * ( ) $ E T  F 

0 s5 s4 1 2 3 

1 s6 acc 

2 r2 s7 r2 r2 

3 r4 r4 r4 r4 

4 s5 s4 8 2 3 

5 r6 r6 r6 r6 

6 s5 s4 9 3 

7 s5 s4 10 

8 s6 s11 

9 r1 s7 r1 r1 

10 r3 r3 r3 r3 

11 r5 r5 r5 r5 

Action Table Goto Table 
1)   E → E+T 
2)   E → T 
3)   T → T*F 
4)   T → F 
5)   F → (E) 
6)   F → id 
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Actions of a LR-parser

Let us assume the parser is in configuration

(s0X1s1 . . . Xmsm, aiai+1 . . . an$)

(initially, the state is (s0, a1a2 . . . an$), where a1 . . . an is the input
word)

ACTION[sm, ai ] can take four values:

1. Shift s: shifts the next input symbol and then the state s on the
stack (s0X1s1 . . . Xmsm, aiai+1 . . . an)! (s0X1s1 . . . Xmai s, ai+1 . . . an)

2. Reduce A! � (denoted by rn where n is a production number)
I Pop 2|�| (= r) items from the stack
I Push A and s where s = GOTO[sm�r , A]

(s0X1s1 . . . Xmsm, aiai+1 . . . an)!
(s0X1s1 . . . Xm�r sm�rAs, aiai+1 . . . an)

I Output the prediction A! �

3. Accept: parsing is successfully completed
4. Error: parser detected an error (typically an empty entry in the action

table).
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Example

I6 : E ! E + .T
T ! .T ⇤ F
T ! .F
F ! .(E)
F ! . id

I9 : E ! E + T .
T ! T . ⇤ F

I10 : T ! T ⇤ F .
I11 : F ! (E).
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Example

I0 : E 0 ! .E ,
E ! .E + T
E ! .T
T ! .T ⇤ F
T ! .F
F ! .(E)
F ! . id

I1 : E 0 ! E .
E ! E . + T

I2 : E ! T .
T ! T . ⇤ F

I3 : T ! F .

I4 : F ! (.E)
E ! .E + T
E ! .T
T ! .T ⇤ F
T ! .F
F ! .(E)
F ! . id

I5 : F ! id.
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Example: parsing table for the expression grammar

1. E ! E + T

2. E ! T

3. T ! T ⇤ F
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6. F ! id
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I6 : E ! E + .T
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F ! .(E)
F ! . id
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Constructing the LR(0) parsing table

1. Construct C = {I0, I1, . . . , In}, the collection of sets of LR(0) items
for G ′ (the augmented grammar)

2. State i of the parser is derived from Ii . Actions for state i are as
follows:

2.1 If A→ α.aβ is in Ii and goto(Ii , a) = Ij , then ACTION[i , a] = Shift j
2.2 If A→ α. is in Ii , then set ACTION[i , a] = Reduce A→ α for all

terminals a.
2.3 If S ′ → S . is in Ii , then set ACTION[i , $] = Accept

3. If goto(Ii ,X ) = Ij , then GOTO[i ,X ] = j .

4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state s0 is the set of items containing S ′ → .S

⇒ LR(0) because the chosen action (shift or reduce) only depends on
the current state
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Example of a LR(0) grammarCHAPTER THREE. PARSING

0 S′ → S$

1 S → ( L )

2 S → x

3 L → S
4 L → L , S

GRAMMAR 3.20.

Rather than rescan the stack for each token, the parser can remember in-
stead the state reached for each stack element. Then the parsing algorithm
is

Look up top stack state, and input symbol, to get action;
If action is

Shift(n): Advance input one token; push n on stack.
Reduce(k): Pop stack as many times as the number of

symbols on the right-hand side of rule k;
Let X be the left-hand-side symbol of rule k;
In the state now on top of stack, look up X to get “goto n”;
Push n on top of stack.

Accept: Stop parsing, report success.
Error: Stop parsing, report failure.

LR(0) PARSER GENERATION
An LR(k) parser uses the contents of its stack and the next k tokens of the
input to decide which action to take. Table 3.19 shows the use of one sym-
bol of lookahead. For k = 2, the table has columns for every two-token se-
quence and so on; in practice, k > 1 is not used for compilation. This is
partly because the tables would be huge, but more because most reasonable
programming languages can be described by L R(1) grammars.

LR(0) grammars are those that can be parsed looking only at the stack,
making shift/reduce decisions without any lookahead. Though this class of
grammars is too weak to be very useful, the algorithm for constructing LR(0)
parsing tables is a good introduction to the LR(1) parser construction algo-
rithm.

We will use Grammar 3.20 to illustrate LR(0) parser generation. Consider
what the parser for this grammar will be doing. Initially, it will have an empty
stack, and the input will be a complete S-sentence followed by $; that is,
the right-hand side of the S′ rule will be on the input. We indicate this as
S′ → .S$ where the dot indicates the current position of the parser.
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3.3. LR PARSING

S'        . S $
S         . ( L )
S         . x
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FIGURE 3.21. LR(0) states for Grammar 3.20.

( ) x , $ S L
1 s3 s2 g4
2 r2 r2 r2 r2 r2
3 s3 s2 g7 g5
4 a
5 s6 s8
6 r1 r1 r1 r1 r1
7 r3 r3 r3 r3 r3
8 s3 s2 g9
9 r4 r4 r4 r4 r4

TABLE 3.22. LR(0) parsing table for Grammar 3.20.

We can now construct a parsing table for this grammar (Table 3.22). For

each edge I
X→ J where X is a terminal, we put the action shift J at position

(I, X) of the table; if X is a nonterminal, we put goto J at position (I, X). For
each state I containing an item S′ → S.$ we put an accept action at (I, $).
Finally, for a state containing an item A → γ . (production n with the dot at
the end), we put a reduce n action at (I, Y ) for every token Y .

In principle, since LR(0) needs no lookahead, we just need a single action
for each state: A state will shift or reduce, but not both. In practice, since we
need to know what state to shift into, we have rows headed by state numbers
and columns headed by grammar symbols.
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each state I containing an item S′ → S.$ we put an accept action at (I, $).
Finally, for a state containing an item A → γ . (production n with the dot at
the end), we put a reduce n action at (I, Y ) for every token Y .

In principle, since LR(0) needs no lookahead, we just need a single action
for each state: A state will shift or reduce, but not both. In practice, since we
need to know what state to shift into, we have rows headed by state numbers
and columns headed by grammar symbols.
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Example of a non LR(0) grammar

Example: parsing table for the expression grammar

1. E ! E + T

2. E ! T

3. T ! T ⇤ F

4. T ! F

5. F ! (E )

6. F ! id

(SLR) Parsing Tables for Expression Grammar 

34 

state id + * ( ) $ E T  F 

0 s5 s4 1 2 3 

1 s6 acc 

2 r2 s7 r2 r2 

3 r4 r4 r4 r4 

4 s5 s4 8 2 3 

5 r6 r6 r6 r6 

6 s5 s4 9 3 

7 s5 s4 10 

8 s6 s11 

9 r1 s7 r1 r1 

10 r3 r3 r3 r3 

11 r5 r5 r5 r5 

Action Table Goto Table 
1)   E → E+T 
2)   E → T 
3)   T → T*F 
4)   T → F 
5)   F → (E) 
6)   F → id 
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Actions of a LR-parser

Let us assume the parser is in configuration

(s0X1s1 . . . Xmsm, aiai+1 . . . an$)

(initially, the state is (s0, a1a2 . . . an$), where a1 . . . an is the input
word)

ACTION[sm, ai ] can take four values:

1. Shift s: shifts the next input symbol and then the state s on the
stack (s0X1s1 . . . Xmsm, aiai+1 . . . an)! (s0X1s1 . . . Xmai s, ai+1 . . . an)

2. Reduce A! � (denoted by rn where n is a production number)
I Pop 2|�| (= r) items from the stack
I Push A and s where s = GOTO[sm�r , A]

(s0X1s1 . . . Xmsm, aiai+1 . . . an)!
(s0X1s1 . . . Xm�r sm�rAs, aiai+1 . . . an)

I Output the prediction A! �

3. Accept: parsing is successfully completed
4. Error: parser detected an error (typically an empty entry in the action

table).
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I6 : E ! E + .T
T ! .T ⇤ F
T ! .F
F ! .(E)
F ! . id

I9 : E ! E + T .
T ! T . ⇤ F

I10 : T ! T ⇤ F .
I11 : F ! (E).
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Example: parsing table for the expression grammar

1. E ! E + T

2. E ! T

3. T ! T ⇤ F

4. T ! F

5. F ! (E )

6. F ! id

(SLR) Parsing Tables for Expression Grammar 

34 

state id + * ( ) $ E T  F 

0 s5 s4 1 2 3 

1 s6 acc 

2 r2 s7 r2 r2 

3 r4 r4 r4 r4 
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5 r6 r6 r6 r6 

6 s5 s4 9 3 

7 s5 s4 10 
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1)   E → E+T 
2)   E → T 
3)   T → T*F 
4)   T → F 
5)   F → (E) 
6)   F → id 
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Actions of a LR-parser

Let us assume the parser is in configuration

(s0X1s1 . . . Xmsm, aiai+1 . . . an$)

(initially, the state is (s0, a1a2 . . . an$), where a1 . . . an is the input
word)

ACTION[sm, ai ] can take four values:

1. Shift s: shifts the next input symbol and then the state s on the
stack (s0X1s1 . . . Xmsm, aiai+1 . . . an)! (s0X1s1 . . . Xmai s, ai+1 . . . an)

2. Reduce A! � (denoted by rn where n is a production number)
I Pop 2|�| (= r) items from the stack
I Push A and s where s = GOTO[sm�r , A]

(s0X1s1 . . . Xmsm, aiai+1 . . . an)!
(s0X1s1 . . . Xm�r sm�rAs, aiai+1 . . . an)

I Output the prediction A! �

3. Accept: parsing is successfully completed
4. Error: parser detected an error (typically an empty entry in the action

table).
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I3 : T ! F .

I4 : F ! (.E)
E ! .E + T
E ! .T
T ! .T ⇤ F
T ! .F
F ! .(E)
F ! . id

I5 : F ! id.
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E ! E . + F
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accept

Example: parsing table for the expression grammar

1. E ! E + T

2. E ! T

3. T ! T ⇤ F

4. T ! F

5. F ! (E )

6. F ! id

(SLR) Parsing Tables for Expression Grammar 

34 

state id + * ( ) $ E T  F 

0 s5 s4 1 2 3 

1 s6 acc 

2 r2 s7 r2 r2 

3 r4 r4 r4 r4 

4 s5 s4 8 2 3 

5 r6 r6 r6 r6 

6 s5 s4 9 3 

7 s5 s4 10 

8 s6 s11 

9 r1 s7 r1 r1 

10 r3 r3 r3 r3 

11 r5 r5 r5 r5 

Action Table Goto Table 
1)   E → E+T 
2)   E → T 
3)   T → T*F 
4)   T → F 
5)   F → (E) 
6)   F → id 
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Example

I6 : E ! E + .T
T ! .T ⇤ F
T ! .F
F ! .(E)
F ! . id

I9 : E ! E + T .
T ! T . ⇤ F

I10 : T ! T ⇤ F .
I11 : F ! (E).
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Conflict: in state 2, we don’t know whether to shift or reduce.
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Constructing the SLR parsing tables

1. Construct c = {I0, I1, . . . , In}, the collection of sets of LR(0) items
for G ′ (the augmented grammar)

2. State i of the parser is derived from Ii . Actions for state i are as
follows:

2.1 If A→ α.aβ is in Ii and goto(Ii , a) = Ij , then ACTION[i , a] = Shift j
2.2 If A→ α. is in Ii , then ACTION[i , a] = Reduce A→ α for all

terminals a in Follow(A) where A 6= S ′

2.3 If S ′ → S . is in Ii , then set ACTION[i , $] = Accept

3. If Goto(Ii ,A) = Ij for a nonterminal A, then GOTO[i ,A] = j

4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state s0 is the set of items containing S ′ → .S

⇒ the simplest form of one symbol lookahead, SLR (Simple LR)
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Example

First Follow

E id ( $ + )
T id ( $ + * )
F id ( $ + * )

(SLR) Parsing Tables for Expression Grammar 

34 

state id + * ( ) $ E T  F 

0 s5 s4 1 2 3 

1 s6 acc 

2 r2 s7 r2 r2 

3 r4 r4 r4 r4 

4 s5 s4 8 2 3 

5 r6 r6 r6 r6 

6 s5 s4 9 3 

7 s5 s4 10 

8 s6 s11 

9 r1 s7 r1 r1 

10 r3 r3 r3 r3 

11 r5 r5 r5 r5 

Action Table Goto Table 
1)   E → E+T 
2)   E → T 
3)   T → T*F 
4)   T → F 
5)   F → (E) 
6)   F → id 
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SLR(1) grammars

A grammar for which there is no (shift/reduce or reduce/reduce)
conflict during the construction of the SLR table is called SLR(1)
(or SLR in short).

All SLR grammars are unambiguous but many unambiguous
grammars are not SLR

There are more SLR grammars than LL(1) grammars but there are
LL(1) grammars that are not SLR.
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Conflict example for SLR parsing

        

            
           

 

                
           

         

        

               
             

                     
                  

      
          

             
             

              
             

                  
    

        

            
           

 

                
           

         

        

               
             

                     
                  

      
          

             
             

              
             

                  
    

(Dragonbook)

Follow(R) contains ’=’. In I2, when seeing ’=’ on the input, we don’t
know whether to shift or to reduce with R → L.

Syntax analysis 190



Summary of SLR parsing

Construction of a SLR parser from a CFG grammar

Eliminate ambiguity (or not, see later)

Add the production S ′ → S , where S is the start symbol of the
grammar

Compute the LR(0) canonical collection of LR(0) item sets and the
Goto function (transition function)

Add a shift action in the action table for transitions on terminals
and goto actions in the goto table for transitions on nonterminals

Compute Follow for each nonterminals (which implies first adding
S ′′ → S ′$ to the grammar and computing First and Nullable)

Add the reduce actions in the action table according to Follow

Check that the grammar is SLR (and if not, try to resolve conflicts,
see later)
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Hierarchy of grammar classes
CHAPTER THREE. PARSING

Unambiguous Grammars

LL(0)

LL(1)

LL(k)

LR(0)

SLR

LALR(1)

LR(1)

LR(k)

Ambiguous 
Grammars

FIGURE 3.29. A hierarchy of grammar classes.

For example, the items in states 6 and 13 of the LR(1) parser for Gram-
mar 3.26 (Figure 3.27) are identical if the lookahead sets are ignored. Also,
states 7 and 12 are identical except for lookahead, as are states 8 and 11 and
states 10 and 14. Merging these pairs of states gives the LALR(1) parsing
table shown in Table 3.28b.

For some grammars, the LALR(1) table contains reduce-reduce conflicts
where the LR(1) table has none, but in practice the difference matters little.
What does matter is that the LALR(1) parsing table requires less memory to
represent than the LR(1) table, since there can be many fewer states.

HIERARCHY OF GRAMMAR CLASSES
A grammar is said to be LALR(1) if its LALR(1) parsing table contains no
conflicts. All SLR grammars are LALR(1), but not vice versa. Figure 3.29
shows the relationship between several classes of grammars.

Any reasonable programming language has a LALR(1) grammar, and there
are many parser-generator tools available for LALR(1) grammars. For this

66

(Appel)
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Next week

End of syntax analysis

Operator precedence parsing

Error detection and recovery

Building the parse tree
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Operator precedence parsing

Bottom-up parsing methods that follow the idea of shift-reduce
parsers

Several flavors: operator, simple, and weak precedence.

In this course, only weak precedence

Main differences with respect to LR parsers:
I There is no explicit state associated to the parser (and thus no state

pushed on the stack)
I The decision of whether to shift or reduce is taken based solely on the

symbol on the top of the stack and the next input symbol (and stored
in a shift-reduce table)

I In case of reduction, the handle is the longest sequence at the top of
stack matching the RHS of a rule
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Structure of the weak precedence parser

Weak precedence parsing output

Shift-reduce table
terminals and $

te
rm

in
al

s,
 

no
nt

er
m

in
al

s 
an

d 
$

Shift/Reduce/Error

stack

input a1 ai an $

X1

X2

Xm

Xm�1
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Weak precedence parsing algorithm

Create a stack with the special symbol $
a = getnexttoken()
while (True)

if (Stack= = $S and a = = $)
break // Parsing is over

Xm = top(Stack)
if (SRT [Xm, a] = shift)

Push a onto the stack
a = getnexttoken()

elseif (SRT [Xm, a] = reduce)
Search for the longest RHS that matches the top of the stack
if no match found

call error-recovery routine
Let denote this rule by Y → Xm−r+1 . . .Xm

Pop r elements off the stack
Push Y onto the stack
Output Y → Xm−r+1 . . .Xm

else call error-recovery routine
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Example for the expression grammar

Example:

E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id

Shift/reduce table

∗ + ( ) id $

E S S R

T S R R R

F R R R R

∗ S S

+ S S

( S S

) R R R R

id R R R R

$ S S
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Example of parsing

Stack Input Action

$ id + id ∗ id$ Shift
$id +id ∗ id$ Reduce by F → id
$F +id ∗ id$ Reduce by T → F
$T +id ∗ id$ Reduce by E → T
$E +id ∗ id$ Shift
$E+ id ∗ id$ Shift
$E + id ∗id$ Reduce by F → id
$E + F ∗id$ Reduce by T → F
$E + T ∗id$ Shift
$E + T∗ id$ Shift
$E + T ∗ id $ Reduce by F → id
$E + T ∗ F $ Reduce by T → T ∗ F
$E + T $ Reduce by E → E + T
$E $ Accept
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Precedence relation: principle

We define the (weak precedence) relations l and m between
symbols of the grammar (terminals or nonterminals)

I X l Y if XY appears in the RHS of a rule or if X precedes a
reducible word whose leftmost symbol is Y

I X m Y if X is the rightmost symbol of a reducible word and Y the
symbol immediately following that word

Shift when Xm l a, reduce when Xm m a

Reducing changes the precedence relation only at the top of the
stack (there is thus no need to shift backward)
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Precedence relation: formal definition

Let G = (V ,Σ,R,S) be a context-free grammar and $ a new
symbol acting as left and right end-marker for the input word.
Define V ′ = V ∪ {$}
The weak precedence relations l and m are defined respectively on
V ′ × V and V × V ′ as follows:

1. X l Y if A→ αXBβ is in R, and B
+⇒ Y γ,

2. X l Y if A→ αXY β is in R

3. $ l X if S
+⇒ Xα

4. X m a if A→ αBβ is in R, and B
+⇒ γX and β

∗⇒ aγ

5. X m $ if S
+⇒ αX

for some α, β, γ, and B
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Construction of the SR table: shift

Shift relation, l:

Initialize S to the empty set.
1 add $ l S to S
2 for each production X → L1L2 . . . Lk

for i = 1 to k − 1
add Li l Li+1 to S

3 repeat
for each∗ pair X l Y in S

for each production Y → L1L2 . . . Lk

Add X l L1 to S
until S did not change in this iteration.

∗ We only need to consider the pairs X l Y with Y a nonterminal that were added in

S at the previous iteration
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Example of the expression grammar: shift

E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id

Step 1 S l $

Step 2 E l +
+ l T
T l ∗
∗l F
(lE
El)

Step 3.1 + l F
∗l id
∗l (
(lT

Step 3.2 + l id
+ l (
(lF

Step 3.3 (l(
(lid
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Construction of the SR table: reduce

Reduce relation, m:

Initialize R to the empty set.
1 add S m $ to R
2 for each production X → L1L2 . . . Lk

for each pair X l Y in S
add Lk m Y in R

3 repeat
for each∗ pair X m Y in R

for each production X → L1L2 . . . Lk

Add Lk m Y to R
until R did not change in this iteration.

∗ We only need to consider the pairs X m Y with X a nonterminal that were added in

R at the previous iteration.
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Example of the expression grammar: reduce

E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id

Step 1 E m $

Step 2 T m +
F m ∗
Tm)

Step 3.1 T m $
F m +
) m ∗
id m ∗
Fm)

Step 3.2 F m $
) m +
id m +
)m)
idm)

Step 3.3 id m $
) m $
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Weak precedence grammars

Weak precedence grammars are those that can be analysed by a
weak precedence parser.

A grammar G = (V ,Σ,R, S) is called a weak precedence grammar
if it satisfies the following conditions:

1. There exist no pair of productions with the same right hand side
2. There are no empty right hand sides (A→ ε)
3. There is at most one weak precedence relation between any two

symbols
4. Whenever there are two syntactic rules of the form A→ αXβ and

B → β, we don’t have X l B

Conditions 1 and 2 are easy to check

Conditions 3 and 4 can be checked by constructing the SR table.
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Example of the expression grammar

E → E + T
E → T
T → T ∗ F
T → F
F → (E)
F → id

Shift/reduce table

∗ + ( ) id $

E S S R
T S R R R
F R R R R
∗ S S
+ S S
( S S
) R R R R
id R R R R
$ S S

Conditions 1-3 are satisfied (there is no conflict in the SR table)

Condition 4:
I E → E + T and E → T but we don’t have + l E (see slide 202)
I T → T ∗ F and T → F but we don’t have ∗l T (see slide 202)
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Removing ε rules

Removing rules of the form A→ ε is not difficult

For each rule with A in the RHS, add a set of new rules consisting
of the different combinations of A replaced or not with ε.

Example:

S → AbA|B
B → b|c
A → ε

is transformed into

S → AbA|Ab|bA|b|B
B → b|c
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Summary of weak precedence parsing

Construction of a weak precedence parser

Eliminate ambiguity (or not, see later)

Eliminate productions with ε and ensure that there are no two
productions with identical RHS

Construct the shift/reduce table

Check that there are no conflict during the construction

Check condition 4 of slide 205
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Using ambiguous grammars with bottom-up parsers

All grammars used in the construction of Shift/Reduce parsing
tables must be un-ambiguous

We can still create a parsing table for an ambiguous grammar but
there will be conflicts

We can often resolve these conflicts in favor of one of the choices to
disambiguate the grammar

Why use an ambiguous grammar?
I Because the ambiguous grammar is much more natural and the

corresponding unambiguous one can be very complex
I Using an ambiguous grammar may eliminate unnecessary reductions

Example:
E → E + T |T

E → E + E |E ∗ E |(E )|id ⇒ T → T ∗ F |F
F → (E )|id
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Set of LR(0) items of the ambiguous expression grammar

E → E + E |E ∗ E |(E)|id

Follow(E ) = {$,+, ∗, )}
⇒ states 7 and 8 have
shift/reduce conflicts for
+ and ∗.

    

    
 

 
   
   

    

    
 
 

           

             
                

                 
                 

              
            

                   
              

            
              

                 
                
               

                  
                 

                
               

(Dragonbook)
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Disambiguation

Example:

Parsing of id + id ∗ id will give the configuration

(0E 1 + 4E 7, ∗id$)

We can choose:
I ACTION[7, ∗] =shift 5⇒ precedence to ∗
I ACTION[7, ∗] =reduce E → E + E ⇒ precedence to +

Parsing of id + id + id will give the configuration

(0E 1 + 4E 7,+id$)

We can choose:
I ACTION[7,+] =shift 4⇒ + is right-associative
I ACTION[7,+] =reduce E → E + E ⇒ + is left-associative

(same analysis for I8)
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Error detection and recovery

In table-driven parsers, there is an error as soon as the table
contains no entry (or an error entry) for the current stack (state)
and input symbols

The least one can do: report a syntax error and give information
about the position in the input file and the tokens that were
expected at that position

In practice, it is however desirable to continue parsing to report
more errors

There are several ways to recover from an error:
I Panic mode
I Phrase-level recovery
I Introduce specific productions for errors
I Global error repair
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Panic-mode recovery

In case of syntax error within a “phrase”, skip until the next
synchronizing token is found (e.g., semicolon, right parenthesis) and
then resume parsing

In LR parsing:
I Scan down the stack until a state s with a goto on a particular

nonterminal A is found
I Discard zero or more input symbols until a symbol a is found that can

follow A
I Stack the state GOTO(s,A) and resume normal parsing
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Phrase-level recovery

Examine each error entry in the parsing table and decide on an
appropriate recovery procedure based on the most likely programmer
error.

Examples in LR parsing: E → E + E |E ∗ E |(E )|id
I id + ∗id :
∗ is unexpected after a +: report a “missing operand” error, push an
arbitrary number on the stack and go to the appropriate next state

I id + id) + id :
Report a “unbalanced right parenthesis” error and remove the right
parenthesis from the input
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Other error recovery approaches

Introduce specific productions for detecting errors:

Add rules in the grammar to detect common errors

Examples for a C compiler:
I → if E I (parenthesis are missing around the expression)
I → if (E ) then I (then is not needed in C)

Global error repair:

Try to find globally the smallest set of insertions and deletions that
would turn the program into a syntactically correct string

Very costly and not always effective
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Building the syntax tree

Parsing algorithms presented so far only check that the program is
syntactically correct

In practice, the parser needs also to build the parse tree (also called
concrete syntax tree)

Its construction is easily embedded into the parsing algorithm

Top-down parsing:
I Recursive descent: let each parsing function return the sub-trees for

the parts of the input they parse
I Table-driven: each nonterminal on the stack points to its node in the

partially built syntax tree. When the nonterminal is replaced by one
of its RHS, nodes for the symbols on the RHS are added as children
to the nonterminal node

Syntax analysis 216



Building the syntax tree

Bottom-up parsing:
I Each stack element points to a subtree of the syntax tree
I When performing a reduce, a new syntax tree is built with the

nonterminal at the root and the popped-off stack elements as children

Note:
I In practice, the concrete syntax tree is not built but rather a

simplified (abstract) syntax tree
I Depending on the complexity of the compiler, the syntax tree might

even not be constructed

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

    x3 = y + 3;
  

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

    asst-stmt ! id = expr ;
    expr      ! number
              |  id
              |  expr + expr
  

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting
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Conclusion: top-down versus bottom-up parsing

Top-down
I Easier to implement (recursively), enough for most standard

programming languages
I Need to modify the grammar sometimes strongly, less general than

bottom-up parsers
I Used in most hand-written compilers

Bottom-up:
I More general, less strict rules on the grammar, SLR(1) powerful

enough for most standard programming languages
I More difficult to implement, less easy to maintain (add new rules,

etc.)
I Used in most parser generators like Yacc or Bison (but JavaCC is

top-down)
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For your project

The choice of a parsing technique is left open for the project but we
ask you to implement the parser by yourself (Yacc, bison or other
parser generators are forbidden)

Weak precedence parsing was the recommended method in previous
implementations of this course

Motivate your choice in your report and explain any transformation
you had to apply to your grammar to make it fit the parser’s
constraints

To avoid mistakes, you should build the parsing tables by program
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Part 4

Semantic analysis
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Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code

Today: semantic analysis and intermediate code generation
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Outline

1. Syntax-directed translation

2. Abstract syntax tree

3. Type and scope checking
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Syntax-directed definition

A general way to associate actions (i.e., programs) to production
rules of a context-free grammar

Used for carrying out most semantic analyses as well as code
translation

A syntax-directed definition associates:
I With each grammar symbol, a set of attributes, and
I With each production, a set of semantic rules for computing the

values of the attributes associated with the symbols appearing in the
production

A grammar with attributes and semantic rules is called an attributed
grammar

A parse tree augmented with the attribute values at each node is
called an annotated parse tree.
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Example

Grammar:

S → aSb|aS |cSacS |ε

Semantic rules:

Production Semantic rules
S → aS1b S.nba := S1.nba + 1

S.nbc := S1.nbc
S → aS1 S.nba := S1.nba + 1

S.nbc := S1.nbc
S → cS1acS2 S.nba := S1.nba + S2.nba + 1

S.nbc := S1.nbc + S2.nbc + 2
S → ε S.nba := 0

S.nbc := 0
S ′ → S Final result is in S .nba and S .nbc

S

Sa b

c S a c S

a S a S b0 0

1 1

3

4

00

0 0

2

2

acaacabb

(subscripts allow to distinguish different instances of the same symbol in a rule)
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Attributes

Two kinds of attributes
I Synthesized: Attribute value for the LHS nonterminal is computed

from the attribute values of the symbols at the RHS of the rule.
I Inherited: Attribute value of a RHS nonterminal is computed from

the attribute values of the LHS nonterminal and some other RHS
nonterminals.

Terminals can have synthesized attributes, computed by the lexer
(e.g., id .lexeme), but no inherited attributes.
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Example: synthesized attributes to evaluate expressions

Left-recursive expression grammar

Production Semantic rules
L→ E L.val = E .val
E → E1 + T E .val = E1.val + T .val
E → T E .val = T .val
T → T1 ∗ F T .val = T1.val × F .val
T → F T .val = F .val
F → (E ) F .val = E .val
F → num F .val = num.lexval

3

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val ⇥ F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)
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Example: inherited attributes to evaluate expressions

LL expression grammar

Production Semantic rules
T → FT ′ T ′.inh = F .val

T .val = T ′.syn
T ′ → ∗FT ′1 T ′1.inh = T ′.inh × F .val

T ′.syn = T ′1.syn
T ′ → ε T ′.syn = T ′.inh
F → num F .val = num.lexval

Example: synthesized attribute to evaluate expressions

LL expression grammar
Production Semantic rules
T ! FT 0 T 0.inh = F .val

T .val = T 0.syn
T 0 ! ⇤FT 0

1 T 0
1.inh = T 0.inh ⇥ F .val

T 0.syn = T 0
1.syn

T 0 ! ✏ T 0.syn = T 0.inh
F ! num F .val = num.lexval

T .val = 15 F .val = 3
num.lexval = 3 T 0.inh = 3
T 0.syn = 15 F .val = 5
num.lexval = 5 T 0

1.inh = 15
T 0

1.syn = 15
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Evaluation order of SDD’s
General case of synthesized and inherited attributes:

Draw a dependency graph between attributes on the parse tree
Find a topological order on the dependency graph (possible if and
only if there are no directed cycles)
If a topological order exists, it gives a working evaluation order. If
not, it is impossible to evaluate the attributes

In practice, it is difficult to predict from a attributed grammar whether
no parse tree will have cycles

Example:

(Dragonbook)
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Evaluation order of SDD’s

Some important particular cases:

A grammar with only synthesized attributes is called a S-attributed
grammar.

Attributes can be evaluated by a bottom-up (postorder) traversal of
the parse tree

1 1

2 2
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Evaluation order of SDD’s
Some important particular cases:

A syntax-directed definition is L-attributed if each attribute is either
1. Synthesized
2. Inherited “from the left”: if the production is A→ X1X2 . . .Xn, then

the inherited attributes for Xj can depend only on
2.1 Inherited attributes of A
2.2 Any attribute among X1,. . . ,Xj−1 (symbols at the left of Xi

2.3 Attributes of Xj (provided they are not causing cycles)

To evaluate the attributes: do a depth first traversal evaluating
inherited attributes on the way down and synthesized attributes on
the way up (i.e., an Euler-tour traversal)

1

2

3 4

5

6 7

8
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Translation of code

Syntax-directed definitions can be used to translate code

Example: translating expressions to post-fix notation

Production Semantic rules

L→ E L.t = E .t
E → E1 + T E .t = E1.t||T .t||′+′
E → E1 − T E .t = E1.t||T .t||′−′
E → T E .t = T .t
T → T1 ∗ F T .t = T1.t||F .t||′∗′
T → F T .t = F .t
F → (E ) F .t = E .t
F → num F .t = num.lexval
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Syntax-directed translation scheme

The previous solution requires to manipulate strings (concatenate,
create, store)

An alternative is to use syntax-directed translation schemes.

A syntax-directed translation scheme (SDT) is a context-free
grammar with program fragments (called semantic actions)
embedded within production bodies:

A→ {R0}X1{R1}X2 . . .Xk{Rk}

Actions are performed from left-to-right when the rules is used for a
reduction

Interesting for example to generate code incrementally
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Example for code translation

Production

L→ E
E → E1 + T {print(′+′)}
E → T
T → T1 ∗ F {print(′∗′)}
T → F
F → (E)
F → num {print(num.lexval)}

Example: synthesized attribute to evaluate expressions

Production Semantic rules
L ! E L.val = E .val
E ! E1 + T E .val = E1.val + T .val
R ! E1 � T E .val = E1.val � T .val
E ! T E .val = T .val
T ! T1 ⇤ F T .val = T1.val ⇥ F .val
T ! F T .val = F .val
F ! (E) F .val = E .val
F ! digit F .val = digit.lexval

(put the table and tree in the dragobook)
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Example for code translation

Production

L ! E
E ! E1 + T {print(0+0)}
E ! T
T ! T1 ⇤ F {print(0⇤0)}
T ! F
F ! (E)
F ! num {print(num.lexval)}

{print(090)} {print(050)} {print(020)}

Put grammar and Figure 2.14 of dragonbook (and postfix notations
to evaluate expressions)

(see the handout about syntax-directed for a treatment of a more
complex grammars with int)

Post-fix SDT as all actions are performed at the end
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(Post-fix SDT as all actions are performed at the end of the productions)
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Side-effects

Semantic rules and actions in SDD and SDT’s can have side-effects.
E.g., for printing values or adding information into a table

Needs to ensure that the evaluation order is compatible with
side-effects

Example: variable declaration in C

Production Semantic rules
D → TL L.type = T .type (inherited)
T → int T .type =int (synthesized)
T → float T .type =float (synthesized)
L→ L1, id L1.type = L.type (inherited)

AddType(id.entry , L.type) (synthesized, side effect)
L→ id AddType(id.entry , L.type) (synthesized, side effect)

id.entry is an entry in the symbol table. AddType add type
information about entry in the symbol table
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Implementation of SDD’s

Attributes can be computed after parsing:

By explicitely traversing the parse or syntax tree in any order
permitting the evaluation of the attributes

Depth-first for S-attributed grammars or Euler tour for L-attributed
grammar

Advantage: does not depend on the order imposed by the syntax
analysis

Drawback: requires to build (and store in memory) the syntax tree
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Evaluation after parsing of L-attributed grammar

For L-attribute grammars, the following recursive function will do the
computation for inherited and synthesized attributes

Analyse(N, InheritedAttributes)

if leaf(N)
return SynthesizedAttributes

Attributes = InheritedAttributes
for each child C of N, from left to right

ChildAttributes = Analyse(C ,Attributes)
Attributes = Attributes ∪ ChildAttributes

Execute semantic rules for the production at node N
return SynthesizedAttributes

1

2

3 4

5

6 7

8

Inherited attributes are passed as arguments and synthesized
attributes are returned by recursive calls

In practice, this is implemented as a big two-levels switch on
nonterminals and then rules with this nonterminal at its LHS
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Variations

Instead of a giant switch, one could have separate routines for each
nonterminal (as with recursive top-down parsing) and a switch on
productions having this nonterminal as LHS (see examples later)

Global variables can be used instead of parameters to pass inherited
attributes by side-effects (with care)

Can be easily adapted to use syntax-directed translation schemes
(by interleaving child analysis and semantic actions)
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Implementation of SDD’s

Attributes can be computed directly during parsing:

Attributes of a S-attributed grammar are easily computed during
bottom-up parsing

Attributes of a L-attributed grammar are easily computed during
top-down parsing

Attribute values can be stored on a stack (the same as the one for
parsing or a different one)

Advantage: one pass, does not require to store (or build) the syntax
tree

Drawback: the order of evaluation is constrained by the parser
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Bottom-up parsing and S-attributed grammar

Synthesized attributes are easily handled during bottom-up parsing.
Handling inherited attributes is possible (for a LL-grammar) but
more difficult.

Example with only synthesized attributes (stored on a stack):

Production Semantic rules Stack actions

E → E1 + T E .val = E1.val + T .val tmpT = pop()
tmpE = pop()
push(tmpE + tempT )

E → T E .val = T .val
T → T1 ∗ F T .val = T1.val × F .val tmpT = pop()

tmpF = pop()
push(tmpT ∗ tempF )

T → F T .val = F .val
F → (E) F .val = E .val
F → num F .val = num.lexval push(num.lexval)

(Parsing tables on slide 188)
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Bottom-up parsing and S-attributed grammar
Stack Input Action Attribute stack

$ 0 2 ∗ (10 + 3)$ s5

$ 0 2 5 ∗(10 + 3)$ r6: F → num 2

$ 0 F 3 ∗(10 + 3)$ r4: T → F 2

$ 0 T 2 ∗(10 + 3)$ s7 2

$ 0 T 2 ∗ 7 (10 + 3)$ s4 2

$ 0 T 2 ∗ 7 ( 4 10 + 3)$ s5 2

$ 0 T 2 ∗ 7 ( 4 10 5 +3)$ r6: F → num 2 10

$ 0 T 2 ∗ 7 ( 4 F 3 +3)$ r4: T → F 2 10

$ 0 T 2 ∗ 7 ( 4 T 2 +3)$ r2: E → T 2 10

$ 0 T 2 ∗ 7 ( 4 E 8 +3)$ s6 2 10

$ 0 T 2 ∗ 7 ( 4 E 8 + 6 3)$ s5 2 10

$ 0 T 2 ∗ 7 ( 4 E 8 + 6 3 5 )$ r6: F → num 2 10 3

$ 0 T 2 ∗ 7 ( 4 E 8 + 6 F 3 )$ r4: T → F 2 10 3

$ 0 T 2 ∗ 7 ( 4 E 8 + 6 T 9 )$ r1: E → E + T 2 13

$ 0 T 2 ∗ 7 ( 4 E 8 )$ s11 2 13

$ 0 T 2 ∗ 7 ( 4 E 8 ) 11 $ r5: F → (E) 2 13

$ 0 T 2 ∗ 7 F 10 $ r3: T → T ∗ F 26

$ 0 T 2 $ r2: E → T 26

$ 0 E 1 $ Accept 26

Semantic analysis 240



Top-down parsing of L-attributed grammar

Recursive parser: the analysis scheme of slide 236 can be
incorporated within the recursive functions of nonterminals

Table-driven parser: this is also possible but less obvious.

Example with only inherited attributes (stored on a stack):

Production Semantic rules Stack actions

S ′ → S S .nb = 0 push(0)

S → (S1)S2 S1.nb = S .nb + 1 push(top() + 1)
S2.nb = S .nb

S → ε print(S .nb) print(pop())

(print the depth of nested parentheses)

Parsing table:

( ) $

S ′ S ′ → S S ′ → S
S S → (S)S S → ε S → ε
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Top-down parsing of L-attributed grammar
Stack Input Attribute stack Output

S ′$ (()(()))() 0
S$ (()(()))() 0 1

(S)S$ (()(()))() 0 1
S)S$ ()(()))() 0 1 2

(S)S)S$ ()(()))() 0 1 2
S)S)S$ )(()))() 0 1 2

)S)S$ )(()))() 0 1
S)S$ (()))() 0 1 2

(S)S)S$ (()))() 0 1 2
S)S)S$ ()))() 0 1 2 3

(S)S)S)S$ ()))() 0 1 2 3
S)S)S)S$ )))() 0 1 2 3

)S)S)S$ )))() 0 1 2
S)S)S$ ))() 0 1 2

)S)S$ ))() 0 1
S)S$ )() 0 1

)S$ )() 0
S$ () 0 1

(S)S$ () 0 1
S)S$ ) 0 1

)S$ ) 0
S$ 0

$
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Comments

It is possible to transform a grammar with synthesized and inherited
attributes into a grammar with only synthesized attributes

It is usually easier to define semantic rules/actions on the original
(ambiguous) grammar, rather than the transformed one

There are techniques to transform a grammar with semantic actions
(see reference books for details)
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Applications of SDD’s

SDD can be used at several places during compilation:

Building the syntax tree from the parse tree

Various static semantic checking (type, scope, etc.)

Code generation

Building an intepreter

. . .
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Abstract syntax tree

would be grouped into the lexemes x3, =, y, +, 3, and ;.

A token is a <token-name,attribute-value> pair. For example

1. The lexeme x3 would be mapped to a token such as <id,1>. The name id is short for identifier. The value 1 is
the index of the entry for x3 in the symbol table produced by the compiler. This table is used to pass
information to subsequent phases.

2. The lexeme = would be mapped to the token <=>. In reality it is probably mapped to a pair, whose second
component is ignored. The point is that there are many different identifiers so we need the second component,
but there is only one assignment symbol =.

3. The lexeme y is mapped to the token <id,2>
4. The lexeme + is mapped to the token <+>.
5. The lexeme 3 is somewhat interesting and is discussed further in subsequent chapters. It is mapped to

<number,something>, but what is the something. On the one hand there is only one 3 so we could just use the
token <number,3>. However, there can be a difference between how this should be printed (e.g., in an error
message produced by subsequent phases) and how it should be stored (fixed vs. float vs double). Perhaps the
token should point to the symbol table where an entry for "this kind of 3" is stored. Another possibility is to
have a separate "numbers table".

6. The lexeme ; is mapped to the token <;>.

Note that non-significant blanks are normally removed during scanning. In C, most blanks are non-significant.
Blanks inside strings are an exception.

Note that we can define identifiers, numbers, and the various symbols and punctuation without using recursion
(compare with parsing below).

1.2.2: Syntax Analysis (or Parsing)

Parsing involves a further grouping in which tokens are grouped
into grammatical phrases, which are often represented in a parse
tree. For example

    x3 = y + 3;
  

would be parsed into the tree on the right.

This parsing would result from a grammar containing rules such as

    asst-stmt ! id = expr ;
    expr      ! number
              |  id
              |  expr + expr
  

Note the recursive definition of expression (expr). Note also the hierarchical decomposition in the figure on the right.

The division between scanning and parsing is somewhat arbitrary, but invariably if a recursive definition is involved,
it is considered parsing not scanning.

Often we utilize a simpler tree called the syntax tree with operators as interior nodes and
operands as the children of the operator. The syntax tree on the right corresponds to the parse
tree above it.

(Technical point.) The syntax tree represents an assignment expression not an assignment statement. In C an
assignment statement includes the trailing semicolon. That is, in C (unlike in Algol) the semicolon is a statement
terminator not a statement separator.

1.2.3: Semantic Analysis

There is more to a front end than simply syntax. The compiler needs semantic information, e.g., the types (integer,
real, pointer to array of integers, etc) of the objects involved. This enables checking for semantic errors and inserting
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The abstract syntax tree is often used as a basis for other semantic
analysis or as an intermediate representation

When the grammar has been modified for parsing, the syntax tree is
a more natural representation than the parse tree

The abstract syntax tree can be constructed using SDD (see next
slides)

Another SDD can then be defined on the syntax tree to perform
semantic checking or generate another intermediate code (directed
by the syntax tree and not the parse tree)
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Generating an abstract syntax tree
For the left-recursive expression grammar:

Production Semantic rules
E → E1 + T E .node = new Node(′+′,E1.node,T .node)
E → E1 − T E .node = new Node(′−′,E1.node,T .node)
E → T E .node = T .node
T → (E) T .node = E .node
T → id T .node = new Leaf (id, id.entry)
T → num T .node = new Leaf (num, num.entry)

(Dragonbook)
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Generating an abstract syntax tree

For the LL transformed expression grammar:
Production Semantic rules
E → TE ′ E .node = E ′.syn; E ′.inh = T .node
E ′ → +TE ′1 E ′1.inh = new Node(′+′,E ′.inh,T .node); E ′.syn = E ′1.syn
E ′ → −TE ′1 E ′1.inh = new Node(′−′,E ′.inh,T .node); E ′.syn = E ′1.syn
E ′ → ε E ′.syn = E ′.inh
E → T E .node = T .node
T → (E) T .node = E .node
T → id T .node = new Leaf (id, id.entry)
T → num T .node = new Leaf (num, num.entry)

(Dragonbook)
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Type and scope checking

Static checkings:
I All checkings done at compilation time (versus dynamic checkings

done at run time)
I Allow to catch errors as soon as possible and ensure that the program

can be compiled

Two important checkings:
I Scope checking: checks that all variables and functions used within a

given scope have been correctly declared
I Type checking: ensures that an operator or function is applied to the

correct number of arguments of the correct types

These two checks are based on information stored in a symbol table
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Scope
{

int x = 1;

int y = 2;

{

double x = 3.1416;

y += (int)x;

}

y += x;

}

Most languages offer some sort of control for scopes, constraining
the visibility of an identifier to some subsection of the program

A scope is typically a section of program text enclosed by basic
program delimiters, e.g., {} in C, begin-end in Pascal.

Many languages allow nested scopes, i.e., scopes within scopes. The
current scope (at some program position) is the innermost scope.

Global variables and functions are available everywhere

Determining if an identifier encountered in a program is accessible at
that point is called Scope checking.
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Symbol table

{ int x; int y;

{ int w; bool y; int z;

..w..; ..x..; ..y..; ..z..;

}

..w..; ..x..; ..y..;

}

x int
y int

w int
y bool
z int

w
.........

The compiler keeps track of names and their binding using a symbol
table (also called an environment)

A symbol table must implement the following operations:
I Create an empty table
I Add a binding between a name and some information
I Look up a name and retrieve its information
I Enter a new scope
I Exit a scope (and reestablish the symbol table in its state before

entering the scope)
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Symbol table

To manage scopes, one can use a persistent or an imperative data
structure

A persistent data structure is a data structure which always
preserves the previous version of itself when it is modified

Example: lists in functional languages such as Scheme
I Binding: insert the binding at the front of the list, lookup: search the

list from head to tail
I Entering a scope: save the current list, exiting: recalling the old list

A non persistent implementation: with a stack
I Binding: push the binding on top of the stack, lookup: search the

stack from top to bottom
I Entering a scope: push a marker on the top of the stack, exiting: pop

all bindings from the stack until a marker is found, which is also
popped

I This approach destroys the symbol table when exiting the scope
(problematic in some cases)
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More efficient data structures

Search in list or stack is O(n) for n symbols in the table

One can used more efficient data structures like hash-tables or
binary search trees

Scopes can then be handled in several ways:
I Create a new symbol table for each scope and use a stack or a linked

list to link them
I Use one big symbol table for all scopes:

I Each scope receives a number
I All variables defined within a scope are stored with their scope number
I Exiting a scope: removing all variables with the current scope number

I There exist persistent hash-tables
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Types

Type checking is verifying that each operation executed in a
program respects the type system of the language, i.e., that all
operands in any expression are of appropriate types and number

Static typing if checking is done at compilation-time (e.g., C, Java,
C++)

Dynamic typing if checking is done at run-time (e.g., Scheme,
Javascript).

Implicit type conversion, or coercion, is when a compiler finds a type
error and change the type of the variable into the appropriate one
(e.g., integer→float)

Semantic analysis 253



Principle of type checking

Identify the types of the language and the language constructs that
have types associated with them

Associate a type attribute to these constructs and semantic rules to
compute them and to check that the typing system is respected

Needs to store identifier types in the symbol table

One can use two separate tables, one for the variable names and one
for the function names

Function types is determined by the types (and number) of
arguments and return type. E.g., (int, int)→ int

Type checking can not be dissociated from scope and other
semantic checking
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Illustration

We will use the following source grammar to illustrate type checking

5.3. A SMALL EXAMPLE LANGUAGE 123

Program ! Funs

Funs ! Fun
Funs ! Fun Funs

Fun ! TypeId ( TypeIds ) = Exp

TypeId ! int id
TypeId ! bool id

TypeIds ! TypeId
TypeIds ! TypeId , TypeIds

Exp ! num
Exp ! id
Exp ! Exp + Exp
Exp ! Exp = Exp
Exp ! if Exp then Exp else Exp
Exp ! id ( Exps )
Exp ! let id = Exp in Exp

Exps ! Exp
Exps ! Exp , Exps

Grammar 5.1: Example language for interpretation

5.3. A SMALL EXAMPLE LANGUAGE 123

Program ! Funs

Funs ! Fun
Funs ! Fun Funs

Fun ! TypeId ( TypeIds ) = Exp

TypeId ! int id
TypeId ! bool id

TypeIds ! TypeId
TypeIds ! TypeId , TypeIds

Exp ! num
Exp ! id
Exp ! Exp + Exp
Exp ! Exp = Exp
Exp ! if Exp then Exp else Exp
Exp ! id ( Exps )
Exp ! let id = Exp in Exp

Exps ! Exp
Exps ! Exp , Exps

Grammar 5.1: Example language for interpretation

(see chapter 5 and 6 of (Mogensen, 2010) for full details)
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Implementation on the syntax tree: expressions

Type checking of expressions:

6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id ( Exps ) t = lookup( f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t 01, . . . , t

0
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t 01, . . . , tn = t 0n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable0 = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable0, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions

scope checking

error recovery

inherited attributes

synthesized attribute

type checking

filled in by lexer

Follows the implementation of slide 237 with one function per
nonterminal, with a switch on production rules
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Implementation on the syntax tree: function calls
6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id ( Exps ) t = lookup( f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t 01, . . . , t

0
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t 01, . . . , tn = t 0n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable0 = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable0, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions
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Figure 6.2: Type checking of expressions≈cons

scope checking

checking function
arguments

filled in by lexer
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Implementation on the syntax tree: variable declaration

6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id ( Exps ) t = lookup( f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t 01, . . . , t

0
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t 01, . . . , tn = t 0n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable0 = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable0, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions
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Figure 6.2: Type checking of expressions

create a new
 scope

Create a new symbol table vtable ′ with the new binding

Pass it as an argument for the evaluation of Exp2 (right child)
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Implementation on the syntax tree: function declaration

6.7. TYPE CHECKING A PROGRAM 139

CheckFun(Fun, f table) = case Fun of
TypeId ( TypeIds ) = Exp ( f , t0) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
t1 = CheckExp(Exp,vtable, f table)
if t0 6= t1
then error()

GetTypeId(TypeId) = case TypeId of
int id (getname(id), int)
bool id (getname(id), bool)

CheckTypeIds(TypeIds) = case TypeIds of
TypeId (x, t) = GetTypeId(TypeId)

bind(emptytable,x, t)
TypeId , TypeIds (x, t) = GetTypeId(TypeId)

vtable = CheckTypeIds(TypeIds)
if lookup(vtable,x) = unbound
then bind(vtable,x, t)
else error(); vtable

Figure 6.3: Type checking a function declaration

the body of the function. The type of the body must match the declared result
type of the function. The type check function for functions, CheckFun, has as in-
herited attribute the symbol table for functions, which is passed down to the type
check function for expressions. CheckFun returns no information, it just checks
for internal errors. CheckFun is shown in figure 6.3, along with the functions for
TypeId and TypeIds, which it uses. The function GetTypeId just returns a pair
of the declared name and type, and CheckTypeIds builds a symbol table from such
pairs. CheckTypeIds also checks if all parameters have different names. emptytable
is an empty symbol table. Looking any name up in the empty symbol table returns
unbound.

6.7 Type checking a program

A program is a list of functions and is deemed type correct if all the functions are
type correct, and there are no two function definitions defining the same function
name. Additionally, there must be a function called main with one integer argument
and integer result.

Since all functions are mutually recursive, each of these must be type checked
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Create a symbol table
with arguments
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Implementation on the syntax tree: program

6.8. ADVANCED TYPE CHECKING 141

CheckProgram(Program) = case Program of
Funs f table = GetFuns(Funs)

CheckFuns(Funs, f table)
if lookup( f table, main) 6= (int)! int
then error()

GetFuns(Funs) = case Funs of
Fun ( f , t) = GetFun(Fun)

bind(emptytable, f , t)
Fun Funs ( f , t) = GetFun(Fun)

f table = GetFuns(Funs)
if lookup( f table, f ) = unbound
then bind( f table, f , t)
else error(); f table

GetFun(Fun) = case Fun of
TypeId ( TypeIds ) = Exp ( f , t0) = GetTypeId(TypeId)

[t1, . . . , tn] = GetTypes(TypeIds)
( f ,(t1, . . . , tn)! t0)

GetTypes(TypeIds) = case TypeIds of
TypeId (x, t) = GetTypeId(TypeId)

[t]
TypeId TypeIds (x1, t1) = GetTypeId(TypeId)

[t2, . . . , tn] = GetTypes(TypeIds)
[t1, t2, . . . , tn]

CheckFuns(Funs, f table) = case Funs of
Fun CheckFun(Fun, f table)
Fun Funs CheckFun(Fun, f table)

CheckFuns(Funs, f table)

Figure 6.4: Type checking a program
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Collect all function definitions in a 
symbol table (to allow mutual recursion)

Language semantic requires a main function

Needs two passes over the function definitions to allow mutual
recursion

See (Mogensen, 2010) for GetFuns (similar as CheckFuns)
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More on types

Compound types are represented by trees (constructed by a SDD)

Example: array declarations in C

Production Semantic rules

T → BC T .t = C .t; C .b = B.t
B → int B.t =int
B → float B.t =float
C → [ NUM ]C1 C .t = array(NUM.val ,C1.t)
C → ε C .t = C .b

int [3][4]

array

array

int

3

4

Compound types are compared by comparing their trees
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More on types

Type coercion:
I The compiler supply implicit conversions of types
I Define a hierarchy of types and convert each operand to their least

upper bound (LUB) in the hierarchy

Overloading:
I An operator accepting different types (e.g., = in our source language)
I Type must be defined at translation

6.5. TYPE CHECKING EXPRESSIONS 137

CheckExp(Exp,vtable, f table) = case Exp of
num int
id t = lookup(vtable,getname(id))

if t = unbound
then error(); int
else t

Exp1 + Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = int and t2 = int
then int
else error(); int

Exp1 = Exp2 t1 = CheckExp(Exp1,vtable, f table)
t2 = CheckExp(Exp2,vtable, f table)
if t1 = t2
then bool
else error(); bool

if Exp1 t1 = CheckExp(Exp1,vtable, f table)
then Exp2 t2 = CheckExp(Exp2,vtable, f table)
else Exp3 t3 = CheckExp(Exp3,vtable, f table)

if t1 = bool and t2 = t3
then t2
else error(); t2

id ( Exps ) t = lookup( f table,getname(id))
if t = unbound
then error(); int
else

((t1, . . . , tn)! t0) = t
[t 01, . . . , t

0
m] = CheckExps(Exps,vtable, f table)

if m = n and t1 = t 01, . . . , tn = t 0n
then t0
else error(); t0

let id = Exp1 t1 = CheckExp(Exp1,vtable, f table)
in Exp2 vtable0 = bind(vtable,getname(id), t1)

CheckExp(Exp2,vtable0, f table)

CheckExps(Exps,vtable, f table) = case Exps of
Exp [CheckExp(Exp,vtable, f table)]
Exp , Exps CheckExp(Exp,vtable, f table)

:: CheckExps(Exps,vtable, f table)

Figure 6.2: Type checking of expressions

Polymorphism: functions defined over a large class of similar types

Implicit types: some languages (like ML or Haskell) do not require
to explicit declare type of functions or variables. Types are
automatically inferred at compile time.
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Part 5

Intermediate code generation
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Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code
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Outline

1. Intermediate representations

2. Illustration

3. Optimization
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Intermediate code generation

The final phase of the compiler front-end

Goal: translate the program into a format expected by the compiler
back-end

In typical compilers: followed by intermediate code optimization and
machine code generation

Techniques for intermediate code generation can be used for final
code generation (cf. your project)
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Intermediate representations

Why use an intermediate representation?

It’s easy to change the source or the target language by adapting
only the front-end or back-end (portability)

It makes optimization easier: one needs to write optimization
methods only for the intermediate representation

The intermediate representation can be directly interpreted7.1. INTERMEDIATE REPRESENTATION TREES

Java

ML

Pascal

C

C++

Sparc

MIPS

Pentium

Itanium

Java

ML

Pascal

C

C++

Sparc

MIPS

Pentium

Itanium

IR

FIGURE 7.1. Compilers for five languages and four target machines:
(a) without an IR, (b) with an IR.

7.1 INTERMEDIATE REPRESENTATION TREES

The intermediate representation tree language is defined by the package Tree,
containing abstract classes Stm and Exp and their subclasses, as shown in
Figure 7.2.

A good intermediate representation has several qualities:

• It must be convenient for the semantic analysis phase to produce.
• It must be convenient to translate into real machine language, for all the de-

sired target machines.
• Each construct must have a clear and simple meaning, so that optimizing

transformations that rewrite the intermediate representation can easily be spec-
ified and implemented.

Individual pieces of abstract syntax can be complicated things, such as
array subscripts, procedure calls, and so on. And individual “real machine”
instructions can also have a complicated effect (though this is less true of
modern RISC machines than of earlier architectures). Unfortunately, it is not
always the case that complex pieces of the abstract syntax correspond exactly
to the complex instructions that a machine can execute.

Therefore, the intermediate representation should have individual compo-
nents that describe only extremely simple things: a single fetch, store, add,
move, or jump. Then any “chunky” piece of abstract syntax can be trans-
lated into just the right set of abstract machine instructions; and groups of
abstract machine instructions can be clumped together (perhaps in quite dif-
ferent clumps) to form “real” machine instructions.

137

(Appel)
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Intermediate representations

Source
language
(high-level)

Target
language
(low-level)

Intermediate
representation

?

How to choose the intermediate representation?
I It should be easy to translate the source language to the intermediate

representation
I It should be easy to translate the intermediate representation to the

machine code
I The intermediate representation should be suitable for optimization

It should be neither too high level nor too low level

One can have more than one intermediate representation in a single
compiler
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Some common intermediate representations

Graphical representations: parse tree, abstract syntax trees, DAG. . .

Java bytecode (executed on the Java Virtual Machine)

LLVM (Low Level Virtual Machine), a general compiler infrastructure

Three Address Code (TAC, of the form “result=op1 operator op2”)

C is used in several compilers as an intermediate representation (Lisp,
Haskell, Cython. . . )

Continuation-passing style (CPS): general form of IR for functional
languages

Microsoft’s Common Intermediate Language (CIL)

GNU Compiler Collection (GCC) uses several intermediate representations:

I Abstract syntax trees
I GENERIC (tree-based)
I GIMPLE (SSA-based, static single assignment form)
I Register Transfer Language (RTL, inspired by lisp lists)

(Google them)
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Outline

1. Intermediate representations

2. Illustration

3. Optimization
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The intermediate language

We will illustrate the translation of typical high-level language
constructions using the following low-level intermediate language:150 CHAPTER 7. INTERMEDIATE-CODE GENERATION

Program ! [ Instructions ]

Instructions ! Instruction
Instructions ! Instruction , Instructions

Instruction ! LABEL labelid
Instruction ! id := Atom
Instruction ! id := unop Atom
Instruction ! id := id binop Atom
Instruction ! id := M[Atom]
Instruction ! M[Atom] := id
Instruction ! GOTO labelid
Instruction ! IF id relop Atom THEN labelid ELSE labelid
Instruction ! id := CALL functionid(Args)

Atom ! id
Atom ! num

Args ! id
Args ! id , Args

Grammar 7.1: The intermediate language

7.3 The intermediate language

In this chapter we have chosen a fairly low-level fine-grained intermediate lan-
guage, as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 10, so a “program”
in our intermediate language will, for the time being, correspond to the body of a
function or procedure in a real program. For the same reason, function calls are
initially treated as primitive operations in the intermediate language.

The grammar for the intermediate language is shown in grammar 7.1. A pro-
gram is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.
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7.3 The intermediate language

In this chapter we have chosen a fairly low-level fine-grained intermediate lan-
guage, as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 10, so a “program”
in our intermediate language will, for the time being, correspond to the body of a
function or procedure in a real program. For the same reason, function calls are
initially treated as primitive operations in the intermediate language.

The grammar for the intermediate language is shown in grammar 7.1. A pro-
gram is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.

Simplified three-address code, very close to machine code

See chapter 5 and 7 of (Mogensen, 2010) for full details
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In this chapter we have chosen a fairly low-level fine-grained intermediate lan-
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We will not treat translation of function calls until chapter 10, so a “program”
in our intermediate language will, for the time being, correspond to the body of a
function or procedure in a real program. For the same reason, function calls are
initially treated as primitive operations in the intermediate language.

The grammar for the intermediate language is shown in grammar 7.1. A pro-
gram is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.

All values are assumed to be
integer

Unary and binary operators
include normal arithmetic and
logical operations

An atomic expression is either a
variable or a constant

M[Atom] := id is a tranfer from
a variable to memory

id := M[Atom] is a tranfer from
memory to a variable
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The intermediate language
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In this chapter we have chosen a fairly low-level fine-grained intermediate lan-
guage, as it is best suited to convey the techniques we want to cover.

We will not treat translation of function calls until chapter 10, so a “program”
in our intermediate language will, for the time being, correspond to the body of a
function or procedure in a real program. For the same reason, function calls are
initially treated as primitive operations in the intermediate language.

The grammar for the intermediate language is shown in grammar 7.1. A pro-
gram is a sequence of instructions. The instructions are:

• A label. This has no effect but serves only to mark the position in the program
as a target for jumps.

• An assignment of an atomic expression (constant or variable) to a variable.

• A unary operator applied to an atomic expression, with the result stored in a
variable.

LABEL only marks a position in the program

relop includes relational operators {=, 6=, <,>,≤ or ≥}
Arguments of a function call are variables and the result is assigned
to a variable
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Principle of translation

Syntax-directed translation using several attributes:
I Code returned as a synthesized attribute
I Symbol tables passed as inherited attributes
I Places to store intermediate values as synthesized or inherited

attributes

Implemented as recursive functions defined on syntax tree nodes (as
for type checking)

Since translation follows the syntax, it is done mostly independently
of the context, which leads to suboptimal code

Code is supposed to be optimized globally afterwards
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Expressions
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Exp ! num
Exp ! id
Exp ! unop Exp
Exp ! Exp binop Exp
Exp ! id(Exps)

Exps ! Exp
Exps ! Exp , Exps

Grammar 7.2: A simple expression language

7.5 Generating code from expressions

Grammar 7.2 shows a simple language of expressions, which we will use as our
initial example for translation. Again, we have let the set of unary and binary
operators be unspecified but assume that the intermediate language includes all
those used by the expression language. We assume that there is a function transop
that translates the name of an operator in the expression language into the name
of the corresponding operator in the intermediate language. The tokens unop and
binop have the names of the actual operators as attributes, accessed by the function
getopname.

When writing a compiler, we must decide what needs to be done at compile-
time and what needs to be done at run-time. Ideally, as much as possible should
be done at compile-time, but some things need to be postponed until run-time, as
they need the actual values of variables, etc., which are not known at compile-time.
When we, below, explain the workings of the translation functions, we might use
phrasing like “the expression is evaluated and the result stored in the variable”.
This describes actions that are performed at run-time by the code that is generated
at compile-time. At times, the textual description may not be 100% clear as to
what happens at which time, but the notation used in the translation functions make
this clear: Intermediate-language code is executed at run-time, the rest is done at
compile time. Intermediate-langauge instructions may refer to values (constants
and register names) that are generated at compile time. When instructions have
operands that are written in italics, these operands are variables in the compiler
that contain compile-time values that are inserted into the generated code. For
example, if place holds the variable name t14 and v holds the value 42, then the
code template [place := v] will generate the code [t14 := 42] .

When we want to translate the expression language to the intermediate lan-
guage, the main complication is that the expression language is tree-structured

Principle of translation:

Every operations is stored in a new variable in the intermediate
language, generated by a function newvar

The new variables for sub-expressions are created by parent
expression and passed to sub-expression as inherited attributes
(synthesized attributes are also possible)
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Expressions
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TransExp(Exp,vtable, f table, place) = case Exp of
num v = getvalue(num)

[place := v]
id x = lookup(vtable,getname(id))

[place := x]
unop Exp1 place1 = newvar()

code1 = TransExp(Exp1,vtable, f table, place1)
op = transop(getopname(unop))
code1++[place := op place1]

Exp1 binop Exp2 place1 = newvar()
place2 = newvar()
code1 = TransExp(Exp1,vtable, f table, place1)
code2 = TransExp(Exp2,vtable, f table, place2)
op = transop(getopname(binop))
code1++code2++[place := place1 op place2]

id(Exps) (code1, [a1, . . . ,an])
= TransExps(Exps,vtable, f table)

f name = lookup( f table,getname(id))
code1++[place := CALL f name(a1, . . . ,an)]

TransExps(Exps,vtable, f table) = case Exps of
Exp place = newvar()

code1 = TransExp(Exp,vtable, f table, place)
(code1, [place])

Exp , Exps place = newvar()
code1 = TransExp(Exp,vtable, f table, place)
(code2,args) = TransExps(Exps,vtable, f table)
code3 = code1++code2
args1 = place :: args
(code3,args1)

Figure 7.3: Translating an expression

String concatenation

where to place the 
translation of Exp1
(inherited attribute)

getopname retrieves the operator associated to the token unop.
transop translates this operator into the equivalent operator in the
intermediate language

[place := v ] is a string where place and v have been replaced by
their values (in the compiler)

I Exemple: if place = t14 and v = 42, [place := v ] is the instruction
[t14:=42].
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Expressions: binary operators and function call
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TransExp(Exp,vtable, f table, place) = case Exp of
num v = getvalue(num)
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code1 = TransExp(Exp1,vtable, f table, place1)
op = transop(getopname(unop))
code1++[place := op place1]

Exp1 binop Exp2 place1 = newvar()
place2 = newvar()
code1 = TransExp(Exp1,vtable, f table, place1)
code2 = TransExp(Exp2,vtable, f table, place2)
op = transop(getopname(binop))
code1++code2++[place := place1 op place2]

id(Exps) (code1, [a1, . . . ,an])
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Expressions: function arguments
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Expressions: example of translation

Translation of 3+f(x-y,z):

t1 := 3
t4 := v0
t5 := v1

t3 := t4 - t5
t6 := v2

t2 := CALL f(t3,t6)
t0 := t1+t2

Assuming that:
x, y, and z are bound to variables v0, v1, and v2

Expression is stored in t0

New variables are generated as t1, t2, t3. . .

Indentation indicates depth of call to TransExp
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Statements
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Stat ! Stat ; Stat
Stat ! id := Exp
Stat ! if Cond then Stat
Stat ! if Cond then Stat else Stat
Stat ! while Cond do Stat
Stat ! repeat Stat until Cond

Cond ! Exp relop Exp

Grammar 7.4: Statement language

treat each subexpression independently of its context. This may lead to superfluous
assignments. We will look at ways of getting rid of these when we treat machine
code generation and register allocation in chapters 8 and 9.

A more complex expression is 3+f(x-y,z). Using the same assumptions as
above, this yields the code

t1 := 3
t4 := v0
t5 := v1
t3 := t4�t5
t6 := v2
t2 := CALL _f(t3,t6)
t0 := t1+t2

We have, for readability, laid the code out on separate lines rather than using a
comma-separated list. The indentation indicates the depth of calls to TransExp that
produced the code in each line.

Suggested exercises: 7.1.

7.6 Translating statements

We now extend the expression language in figure 7.2 with statements. The exten-
sions are shown in grammar 7.4.

When translating statements, we will need the symbol table for variables (for
translating assignment), and since statements contain expressions, we also need
f table so we can pass it on to TransExp.

Principle of translation:

New unused labels are generated by the function newlabel (similar
to newvar)

These labels are created by parents and passed as inherited
attributes
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Statements: sequence of statements and assignment
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TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,getname(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]

Figure 7.5: Translation of statements
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Statements: conditions
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TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,getname(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]

Figure 7.5: Translation of statements
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code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]
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TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relop Exp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(getopname(relop))
code1++code2++[IF t1 opt2 THEN labelt ELSE label f ]

Figure 7.6: Translation of simple conditions

7.7 Logical operators

Logical conjunction, disjunction and negation are often available for conditions, so
we can write, e.g., x = y or y = z, where or is a logical disjunction operator. There
are typically two ways to treat logical operators in programming languages:

1) Logical operators are similar to arithmetic operators: The arguments are eval-
uated and the operator is applied to find the result.

2) The second operand of a logical operator is not evaluated if the first operand
is sufficient to determine the result. This means that a logical and will not
evaluate its second operand if the first evaluates to false, and a logical or will
not evaluate the second operand if the first is true.

The first variant is typically implemented by using bitwise logical operators and
uses 0 to represent false and a nonzero value (typically 1 or �1) to represent true.
In C, there is no separate boolean type. The integer 1 is used for logical truth1 and
0 for falsehood. Bitwise logical operators & (bitwise and) and | (bitwise or) are
used to implement the corresponding logical operations. Logical negation is not
handled by bitwise negation, as the bitwise negation of 1 is not 0. Instead, a special
logical negation operator ! is used that maps any non-zero value to 0 and 0 to 1.
We assume an equivalent operator is available in the intermediate language.

The second variant is called sequential logical operators. In C, these are called
&& (logical and) and || (logical or).

Adding non-sequential logical operators to our language is not too difficult.
Since we have not said exactly which binary and unary operators exist in the inter-
mediate language, we can simply assume these include relational operators, bitwise
logical operations and logical negation. We can now simply allow any expression2

as a condition by adding the production

1Actually, any non-zero value is treated as logical truth.
2If it is of boolean type, which we assume has been verified by the type checker.
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Statements: while loop
158 CHAPTER 7. INTERMEDIATE-CODE GENERATION

TransStat(Stat,vtable, f table) = case Stat of
Stat1 ; Stat2 code1 = TransStat(Stat1,vtable, f table)

code2 = TransStat(Stat2,vtable, f table)
code1++code2

id := Exp place = lookup(vtable,getname(id))
TransExp(Exp,vtable, f table, place)

if Cond label1 = newlabel()
then Stat1 label2 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code1++[LABEL label1]++code2

++[LABEL label2]
if Cond label1 = newlabel()
then Stat1 label2 = newlabel()
else Stat2 label3 = newlabel()

code1 = TransCond(Cond, label1, label2,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
code3 = TransStat(Stat2,vtable, f table)
code1++[LABEL label1]++code2

++[GOTO label3, LABEL label2]
++code3++[LABEL label3]

while Cond label1 = newlabel()
do Stat1 label2 = newlabel()

label3 = newlabel()
code1 = TransCond(Cond, label2, label3,vtable, f table)
code2 = TransStat(Stat1,vtable, f table)
[LABEL label1]++code1

++[LABEL label2]++code2
++[GOTO label1, LABEL label3]

repeat Stat1 label1 = newlabel()
until Cond label2 = newlabel()

code1 = TransStat(Stat1,vtable, f table)
code2 = TransCond(Cond, label2, label1,vtable, f table)
[LABEL label1]++code1

++code2++[LABEL label2]
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++code2++[LABEL label2]
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Logical operators

Logical conjunction, disjunction, and negation are often available to
define conditions

Two ways to implement them:
I Usual arithmetic operators: arguments are evaluated and then the

operators is applied. Example in C: bitwise operators: ’&’ and ’|’.
I Sequential logical operators: the second operand is not evaluated if

the first determines the result (lazy or short-circuit evaluation).
Example in C: logical operators ’&&’ and ’||’.

First type is simple to implement:
I by allowing any expression as condition

Cond → Exp

I by including ’&’, ’|’, and ’!’ among binary and unary operators

Second one requires more modifications
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Sequential logical operators

7.7. LOGICAL OPERATORS 161

Exp ! num
Exp ! id
Exp ! unop Exp
Exp ! Exp binop Exp
Exp ! id(Exps)
Exp ! true
Exp ! false
Exp ! Cond

Exps ! Exp
Exps ! Exp , Exps

Cond ! Exp relop Exp
Cond ! true
Cond ! false
Cond ! ! Cond
Cond ! Cond && Cond
Cond ! Cond || Cond
Cond ! Exp

Grammar 7.7: Example language with logical operators
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TransExp(Exp,vtable, f table, place) = case Exp of
...

true [place := 1]
false [place := 0]
Cond label1 = newlabel()

label2 = newlabel()
code1 = TransCond(Cond, label1, label2,vtable, f table)
[place := 0]++code1

++[LABEL label1, place := 1]
++[LABEL label2]

TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relopExp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(getopname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE label f ]

true [GOTO labelt ]
false [GOTO label f ]
! Cond1 TransCond(Cond1, label f , labelt ,vtable, f table)
Cond1 && Cond2 arg2 = newlabel()

code1=TransCond(Cond1,arg2, label f ,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Cond1 || Cond2 arg2 = newlabel()
code1=TransCond(Cond1, labelt ,arg2,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Exp t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code1++[IF t 6= 0 THEN labelt ELSE label f ]

Figure 7.8: Translation of sequential logical operators
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TransExp(Exp,vtable, f table, place) = case Exp of
...

true [place := 1]
false [place := 0]
Cond label1 = newlabel()

label2 = newlabel()
code1 = TransCond(Cond, label1, label2,vtable, f table)
[place := 0]++code1

++[LABEL label1, place := 1]
++[LABEL label2]

TransCond(Cond, labelt , label f ,vtable, f table) = case Cond of
Exp1 relopExp2 t1 = newvar()

t2 = newvar()
code1 = TransExp(Exp1,vtable, f table, t1)
code2 = TransExp(Exp2,vtable, f table, t2)
op = transop(getopname(relop))
code1++code2++[IF t1 op t2 THEN labelt ELSE label f ]

true [GOTO labelt ]
false [GOTO label f ]
! Cond1 TransCond(Cond1, label f , labelt ,vtable, f table)
Cond1 && Cond2 arg2 = newlabel()

code1=TransCond(Cond1,arg2, label f ,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Cond1 || Cond2 arg2 = newlabel()
code1=TransCond(Cond1, labelt ,arg2,vtable, f table)
code2=TransCond(Cond2, labelt , label f ,vtable, f table)
code1++[LABEL arg2]++code2

Exp t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code1++[IF t 6= 0 THEN labelt ELSE label f ]

Figure 7.8: Translation of sequential logical operators
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Other statements

More advanced control statements:

Goto and labels: labels are stored in the symbol table (and
associated with intermediate language labels). Generated as soon as
a jump or a declaration is met (to avoid one additional pass)

Break/exit: pass an additional (inherited) attribute to the
translation function of loops with the label an break/exit should
jump to. A new label is passed when entering a new loop.

Case/switch-statements: translated with nested if-then-else
statements.

. . .
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Arrays

Language can be extended with one-dimensional arrays:

7.9. TRANSLATING STRUCTURED DATA 165

these are now GOTO’s to the code for each case-branch. The code for the branches is
placed in sequence after the nested if-then-else, with break handled by GOTO’s
as described above. Hence, if no explicit jump is made, one branch will fall through
to the next.

7.9 Translating structured data

So far, the only values we have used are integers and booleans. However, most
programming languages provide floating-point numbers and structured values like
arrays, records (structs), unions, lists or tree-structures. We will now look at how
these can be translated. We will first look at floats, then at one-dimensional arrays,
multi-dimensional arrays and finally other data structures.

7.9.1 Floating-point values

Floating-point values are, in a computer, typically stored in a different set of regis-
ters than integers. Apart from this, they are treated the same way we treat integer
values: We use temporary variables to store intermediate expression results and
assume the intermediate language has binary operators for floating-point numbers.
The register allocator will have to make sure that the temporary variables used for
floating-point values are mapped to floating-point registers. For this reason, it may
be a good idea to let the intermediate code indicate which temporary variables hold
floats. This can be done by giving them special names or by using a symbol table
to hold type information.

7.9.2 Arrays

We extend our example language with one-dimensional arrays by adding the fol-
lowing productions:

Exp ! Index
Stat ! Index := Exp
Index ! id[Exp]

Index is an array element, which can be used the same way as a variable, either as
an expression or as the left part of an assignment statement.

We will initially assume that arrays are zero-based (i.e.. the lowest index is 0).
Arrays can be allocated statically, i.e., at compile-time, or dynamically, i.e., at

run-time. In the first case, the base address of the array (the address at which index
0 is stored) is a compile-time constant. In the latter case, a variable will contain
the base address of the array. In either case, we assume that the symbol table for
variables binds an array name to the constant or variable that holds its base address.

Principle of translation:

Arrays can be allocated statically (at compile-time) or dynamically
(at run-time)

Base address of the array is stored as a constant in the case of static
allocation, or in a variable in the case of dynamic allocation

The symbol table binds the array name with to the constant or
variable containing its address
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Arrays: translation166 CHAPTER 7. INTERMEDIATE-CODE GENERATION

TransExp(Exp,vtable, f table, place) = case Exp of
Index (code1,address) = TransIndex(Index,vtable, f table)

code1++[place := M[address]]

TransStat(Stat,vtable, f table) = case Stat of
Index := Exp (code1,address)=TransIndex(Index,vtable, f table)

t = newvar()
code2 = TransExp(Exp,vtable, f table, t)
code1++code2++[M[address] := t]

TransIndex(Index,vtable, f table) = case Index of
id[Exp] base = lookup(vtable,getname(id))

t = newvar()
code1 = TransExp(Exp,vtable, f table, t)
code2 = code1++[t := t ⇤4, t := t +base]
(code2, t)

Figure 7.9: Translation for one-dimensional arrays

Most modern computers are byte-addressed, while integers typically are 32 or
64 bits long. This means that the index used to access array elements must be
multiplied by the size of the elements (measured in bytes), e.g., 4 or 8, to find the
actual offset from the base address. In the translation shown in figure 7.9, we use 4
for the size of integers. We show only the new parts of the translation functions for
Exp and Stat.

We use a translation function TransIndex for array elements. This returns a
pair consisting of the code that evaluates the address of the array element and the
variable that holds this address. When an array element is used in an expression,
the contents of the address is transferred to the target variable using a memory-load
instruction. When an array element is used on the left-hand side of an assignment,
the right-hand side is evaluated, and the value of this is stored at the address using
a memory-store instruction.

The address of an array element is calculated by multiplying the index by the
size of the elements and adding this to the base address of the array. Note that
base can be either a variable or a constant (depending on how the array is allocated,
see below), but since both are allowed as the second operator to a binop in the
intermediate language, this is no problem.

Allocating arrays

So far, we have only hinted at how arrays are allocated. As mentioned, one pos-
sibility is static allocation, where the base-address and the size of the array are

(Assuming arrays are indexed starting at 0 and integers are 64 bits long)
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Multi-dimensional arrays
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1st column 2nd column 3rd column · · ·
1st row a[0][0] a[0][1] a[0][2] · · ·
2nd row a[1][0] a[1][1] a[1][2] · · ·
3rd row a[2][0] a[2][1] a[2][2] · · ·
...

...
...

...
. . .

Figure 7.10: A two-dimensional array

form it is laid out one column at a time. In a 3⇥2 array, the ordering for row-major
is

a[0][0], a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

For column-major the ordering is

a[0][0], a[1][0], a[2][0], a[0][1], a[1][1], a[2][1]

If the size of an element is size and the sizes of the dimensions in an n-dimensional
array are dim0,dim1, . . . ,dimn�2,dimn�1, then in row-major format an element at
index [i0][i1] . . . [in�2][in�1] has the address

base+((. . .(i0 ⇤dim1 + i1)⇤dim2 . . .+ in�2)⇤dimn�1 + in�1)⇤ size

In column-major format the address is

base+((. . .(in�1 ⇤dimn�2 + in�2)⇤dimn�3 . . .+ i1)⇤dim0 + i0)⇤ size

Note that column-major format corresponds to reversing the order of the indices of
a row-major array. i.e., replacing i0 and dim0 by in�1 and dimn�1, i1 and dim1 by
in�2 and dimn�2, and so on.

We extend the grammar for array-elements to accommodate multi-dimensional
arrays:

Index ! id[Exp]
Index ! Index[Exp]

and extend the translation functions as shown in figure 7.11. This translation is for
row-major arrays. We leave column-major arrays as an exercise.

With these extensions, the symbol table must return both the base-address of the
array and a list of the sizes of the dimensions. Like the base-address, the dimension
sizes can either be compile-time constants or variables that at run-time will hold the
sizes. We use an auxiliary translation function CalcIndex to calculate the position of

Principle of translation:
Two ways to represent a 2-dimensional array in linear memory:

I Row-major order: one row at a time. For a 3× 2 array: a[0][0],
a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

I Column-major order: one column at a time. For a 3× 2 array:
a[0][0], a[1][0], a[2][0], a[0][1], a[1][1], a[2][1]

Generalization: if dim0, dim1, . . . , dimn−1 are the sizes of the
dimensions in a n-dimensional arrays, the element [i0][i1] . . . [in−1]
has the address:

I Row-major:
base + ((. . . (i0 · dim1 + i1) · dim2 . . .+ in−2) · dimn−1 + in−1) · size

I Column-major:
base + ((. . . (i0 · dim1 + i1) · dim2 . . .+ in−2) · dimn−1 + in−1) · size

Dimension sizes are stored as constant (static), in variables or in
memory next to the array data (dynamic)
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Multi-dimensional arrays: translation

7.9. TRANSLATING STRUCTURED DATA 169

TransExp(Exp,vtable, f table, place) = case Exp of
Index (code1,address) = TransIndex(Index,vtable, f table)

code1++[place := M[address]]

TransStat(Stat,vtable, f table) = case Stat of
Index := Exp (code1,address) = TransIndex(Index,vtable, f table)

t = newvar()
code2 = TransExp(Exp2,vtable, f table, t)
code1++code2++[M[address] := t]

TransIndex(Index,vtable, f table) =
(code1, t,base, []) = CalcIndex(Index,vtable, f table)
code2 = code1++[t := t ⇤4, t := t +base]
(code2, t)

CalcIndex(Index,vtable, f table) = case Index of
id[Exp] (base,dims) = lookup(vtable,getname(id))

t = newvar()
code = TransExp(Exp,vtable, f table, t)
(code, t,base, tail(dims))

Index[Exp] (code1, t1,base,dims) = CalcIndex(Index,vtable, f table)
dim1 = head(dims)
t2 = newvar()
code2 = TransExp(Exp,vtable, f table, t2)
code3 = code1++code2++[t1 := t1 ⇤dim1, t1 := t1 + t2]
(code3, t1,base, tail(dims))

Figure 7.11: Translation of multi-dimensional arrays(Assume dimension sizes are stored in the symbol table, as constant or
variable)
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Other structures

Floating point values: can be treated the same way as integers
(assuming the intermediate language has specific variables and
operators for floating point numbers)

Records/structures: allocated in a similar way as arrays
I Each field is accessed by adding an offset to the base-address of the

record
I Base-addresses and offsets for each field are stored in the symbol

table for all record-variables

Strings: similar to arrays of bytes but with a length that can vary at
run-time

. . .
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Variable declaration
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Suggested exercises: 7.8.

7.10 Translating declarations

In the translation functions used in this chapter, we have several times required that
“The symbol table must contain . . . ”. It is the job of the compiler to ensure that
the symbol tables contain the information necessary for translation. When a name
(variable, label, type, etc.) is declared, the compiler must keep in the symbol-table
entry for that name the information necessary for compiling any use of that name.
For scalar variables (e.g., integers), the required information is the intermediate-
language variable that holds the value of the variable. For array variables, the
information includes the base-address and dimensions of the array. For records, it
is the offsets for each field and the total size. If a type is given a name, the symbol
table must for that name provide a description of the type, such that variables that
are declared to be that type can be given the information they need for their own
symbol-table entries.

The exact nature of the information that is put into the symbol tables will de-
pend on the translation functions that use these tables, so it is usually a good idea to
write first the translation functions for uses of names and then translation functions
for their declarations.

Translation of function declarations will be treated in chapter 10.

7.10.1 Example: Simple local declarations

We extend the statement language by the following productions:

Stat ! Decl ; Stat
Decl ! int id
Decl ! int id[num]

We can, hence, declare integer variables and one-dimensional integer arrays for use
in the following statement. An integer variable should be bound to a location in the
symbol table, so this declaration should add such a binding to vtable. An array
should be bound to a variable containing its base address. Furthermore, code must
be generated for allocating space for the array. We assume arrays are heap allocated
and that the intermediate-code variable HP points to the first free element of the
(upwards growing) heap. Figure 7.12 shows the translation of these declarations.
When allocating arrays, no check for heap overflow is done.

7.11 Further reading

A comprehensive discussion about intermediate languages can be found in [35].

Principle of translation:

Information about where to found scalar variables (e.g. integer) and
arrays after declaration is stored in the symbol table

Allocations can be done in many ways and places (static, dynamic,
local, global. . . )
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TransStat(Stat,vtable, f table) = case Stat of
Decl ; Stat1 (code1,vtable1) = TransDecl(Decl,vtable)

code2 = TransStat(Stat1,vtable1, f table)
code1++code2

TransDecl(Decl,vtable) = case Decl of
int id t1 = newvar()

vtable1 = bind(vtable,getname(id), t1)
([], vtable1)

int id[num] t1 = newvar()
vtable1 = bind(vtable,getname(id), t1)
([t1 := HP, HP := HP+(4⇤getvalue(num))], vtable1)

Figure 7.12: Translation of simple declarations

Functional and logic languages often use high-level intermediate languages,
which are in many cases translated to lower-level intermediate code before emit-
ting actual machine code. Examples of such intermediate languages can be found
in [23], [8] and [6].

Another high-level intermediate language is the Java Virtual Machine [29].
This language has single instructions for such complex things as calling virtual
methods and creating new objects. The high-level nature of JVM was chosen for
several reasons:

• By letting common complex operations be done by single instructions, the
code is smaller, which reduces transmission time when sending the code over
the Internet.

• JVM was originally intended for interpretation, and the complex operations
also helped reduce the overhead of interpretation.

• A program in JVM is validated (essentially type-checked) before interpreta-
tion or further translation. This is easier when the code is high-level.

Exercises

Exercise 7.1

Use the translation functions in figure 7.3 to generate code for the expression
2+g(x+y,x*y). Use a vtable that binds x to v0 and y to v1 and an f table that
binds g to _g. The result of the expression should be put in the intermediate-code
variable r (so the place attribute in the initial call to TransExp is r).

(Assumes scalar variables are stored in intermediate language variables
and arrays are dynamically allocated on the heap, with their
base-addresses stored in a variable. HP points to the first free position of
the heap.)
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Comments

Needs to add error checking in previous illustration (array index out
of bound in arrays, wrong number of dimensions, memory/heap
overflow, etc.)

In practice, results of translation are not returned as strings but
either:

I output directly into an array or a file
I or stored into a structure (translation tree or linked list)

The latter allows subsequent code restructuring during optimization

We have not talked about:
I memory organization: typically subdivided into static data (for static

allocation), heap (for dynamic allocation) and stack (for function
calls)

I translation of function calls: function arguments, local variables, and
return address are stored on the stack (similar to what you have seen
in INFO-0012, computation structures)
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Outline

1. Intermediate representations

2. Illustration

3. Optimization
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IR code optimization

IR code generation is usually followed by code optimization

Why?
I IR generation introduces redundancy
I To compensate for laziness of programmers

Improvement rather than optimization since optimization is
undecidable

Challenges in optimization:
I Correctness: should not change the semantic of the program
I Efficiency: should produce IR code as efficient as possible
I Computing times: should not take too much time to optimize

What to optimize?
I Computing times
I Memory usage
I Power consumption
I . . .
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Control-flow graph

A basic block is a series of IR
instructions where:

I there is one entry point into
the basic block, and

I there is one exit point out of
the basic block.

Control-flow graph: nodes are
basic blocks and edges are
jumps between blocks

i:=3
t1:=4*i
t2:=a[t1]
j:=2

lab1: j:=j+1
if j>100 then lab4

lab2: if t2<b then lab3

t2:=t2+3
GOTO lab2

lab3: b:=b-j
GOTO lab1

lab4: a[t1]:=t2
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Local optimizations

Local optimization: optimization within a single basic block

Examples:

Constant folding: evaluation at compile-time of expressions whose
operands are contant

I 10+2*3 → 16
I [If 1 then Lab1 Else Lab2] → [GOTO Lab1]

Constant propagation: if a variable is assigned to a constant, then
propagate the constant into each use of the variable

I [x:=4;t:=y*x;] can be transformed into [t:=y*4;] if x is not used later
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Local optimizations

Examples:

Copy propagation:: similar to constant propagation but generalized
to non constant values

tmp2 = tmp1;
tmp3 = tmp2 * tmp1;
tmp4 = tmp3;
tmp5 = tmp3 * tmp2;
c = tmp5 + tmp4;

tmp3 = tmp1 * tmp1;
tmp5 = tmp3 * tmp1;
c = tmp5 + tmp3;

Dead code elimination: remove instructions whose result is never
used

I Example: Remove [tmp1=tmp2+tmp3;] if tmp1 is never used
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Local optimizations

Examples:

Common subexpression elimination: if two operations produce the
same results, compute the result once and reference it the second
time

I Example: in a[i]=a[i]+2, the address of a[i] is computed twice.
When translating, do it once and store the result in a temporary
variable

Code moving/hoisting: move outside of a loop all computations
independent of the variables that are changing inside the loop

I Example: part of the computation of the address for a[i][j] can be
removed from this loop

while (j<k) {
sum = sum + a[i][j];
j++;

}
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IR code optimization

Local optimizations can be interleaved in different ways and applied
several times each

Optimal optimization order is very difficult to determine

Global optimization: optimization across basic blocks
I Implies performing data-flow analysis, i.e., determine how values

propagate through the control-flow graph
I More complicated than local optimization
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For your project

No need to use an intermediate language (except for the syntax tree
if needed)

Syntax-directed translation as illustrated here should be enough

Implementation:
I During parsing: faster and requires less memory
I On the syntax tree: more flexible but less efficient
I Hybrid approaches are possible, i.e., developing explicitely syntax

trees only for some language constructions

If your target language is high-level, then:
I You can pre-defined structures/functions that mimic

structures/functions in the source language to ease translation. For
example, implement scheme lists with linked lists in C.

I You can use memory allocation facilities of the target language
(instead of doing all work manually)

No need to optimize code explicitely but avoid obvious sources of
inefficiency
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Part 6

Code generation
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Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code
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Final code generation

At this point, we have optimized intermediate code, from which we
would like to generate the final code

By final code, we typically mean assembly language of the target
machine

Goal of this stage:
I Choose the appropriate machine instructions to translate each

intermediate representation instruction
I Handle finite machine resources (registers, memory, etc.)
I Implement low-level details of the run-time environment
I Implement machine-specific code optimization

This step is very machine-specific

In this course, we will only mention some typical and general
problems
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Short tour on machine code

RISC (Reduced Instruction Set Computer)
I E.g.: PowerPC, Sparc, MIPS (embedded systems), ARM...
I Many registers, 3-address instructions, relatively simple instruction

sets

CISC (Complex Instruction Set Computer)
I E.g.: x86, x86-64, amd64...
I Few registers, 2-address instructions, complex instruction sets

Stack-based computer:
I E.g.: Not really used anymore but Java’s virtual machine is

stack-based
I No register, zero address instructions (operands on the stack)

Accumulator-based computer:
I E.g.: First IBM computers were accumulator-based
I One special register (the accumulator), one address instructions,

other registers used in loops and address specification
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Outline

1. Introduction

2. Instruction selection

3. Register allocation

4. Memory management
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Instruction selection

One needs to map one or several instructions of the intermediate
representation into one or several instructions of the machine
language

Complexity of the task depends on:
I the level of the IR
I the nature of the instruction-set architecture
I the desired quality of the generated code

Examples of problems:
I Conditional jumps
I Constants
I Complex instructions
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Example: Conditional jumps

Conditional jumps in our intermediate language are of the form:
IF id relop Atom THEN labelid ELSE labelid

Conditional jumps might be different on some machines:
I One-way branch instead of two-way branches

IF c THEN lt ELSE lf
branch if c lr
jump lf

I Condition such as “id relop Atom” might not be allowed. Then,
compute the condition and store it in a register

I There might exist special registers for conditions
I . . .
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Example: Constants

IR allows arbitrary constants as operands to binary or unary
operators

This is not always the case in machine code
I MIPS allows only 16-bit constants in operands (even though integers

are 32 bits)
I On the ARM, a constant can only be a 8-bit number positioned at

any even bit boundary (within a 32-bit word)

If a constant is too big, translation requires to build the constant
into some register

If the constant is used within a loop, its computation should be
moved outside
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Exploiting complex instructions

If we do not care about efficiency, instruction selection is
straightforward:

I Writes a code skeleton for every IR instructions
I Example in MIPS assembly:

t2 := t1 + 116 ⇒ addi r2,r1,116

(where r2 and r1 are the registers chosen for t2 and t1)

Most processors (even RISC-based) have complex instructions that
can translate several IR instructions at once

I Examples in MIPS assembly:

t2 := t1 + 116 ⇒ lw r3, 116(r1)
t3 := M[t2]

(where r3 and r1 are the registers chosen for t3 and t1 resp. and
assuming that t2 will not be used later)

For efficiency reason, one should exploit them
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Code generation principle

Determine for each variable whether it is dead after a particular use
(liveness analysis, see later)

t2 := t1 + 116
t3 := M[t last

2 ]

Associate an address (register, memory location...) to each variable
(register allocation, see later)

Define an instruction set description, i.e., a list of pairs of:
I pattern: a sequence of IR instructions

t := rs + k
rt := M[t last ]

I replacement: a sequence of machine-code instruction translating the
pattern

lw rt ,k(rs)

Use pattern matching to do the translation
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Illustration

Pattern/replacement pairs for a subset of the MIPS instruction set

8.4. EXPLOITING COMPLEX INSTRUCTIONS 185

t := rs + k, lw rt , k(rs)
rt := M[tlast ]
rt := M[rs] lw rt , 0(rs)
rt := M[k] lw rt , k(R0)
t := rs + k, sw rt , k(rs)
M[tlast ] := rt

M[rs] := rt sw rt , 0(rs)
M[k] := rt sw rt , k(R0)
rd := rs + rt add rd , rs, rt

rd := rt add rd , R0, rt

rd := rs + k addi rd , rs, k
rd := k addi rd , R0, k
GOTO label j label
IF rs = rt THEN labelt ELSE label f , beq rs, rt , labelt
LABEL label f label f :
IF rs = rt THEN labelt ELSE label f , bne rs, rt , label f

LABEL labelt labelt :
IF rs = rt THEN labelt ELSE label f beq rs, rt , labelt

j label f

IF rs < rt THEN labelt ELSE label f , slt rd , rs, rt
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MIPS instructions:

lw r,k(s): r = M[s + k]

sw r,k(s): M[s + k] = r

add r,s,t: r = s + t

addi r,s,k: r = s + k
where k is a constant

R0: a register containing
the constant 0

(Mogensen)
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Illustration
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MIPS instructions:

beq r,s,lab: branch to l if
r=s

bnq r,s,lab: branch to l if
r6=s

slt r,s,t: d = (s < t)

j l: unconditional jump

(Mogensen)
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Pattern matching

A pattern should be defined for every single IR instruction
(otherwise it would not be possible to translate some IR code)

A last in a pattern can only be matched by a last in the IR code

But any variable in a pattern can match a last in the IR code

If patterns overlap, there are potentially several translations for the
same IR code

On wants to find the best possible translation (e.g., the shortest or
the fastest)

Two approaches:
I Greedy: order the pairs so that longer patterns are listed before

shorter ones and at each step, use the first pattern that matches a
prefix of the IR code

I Optimal: associate a cost to each replacement and find the
translation that minimizes the total translation cost, e.g. using
dynamic programming
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Illustration

Using the greedy approach:

IR code MIPS code

a := a + blast add a, a, b
d := c + 8 sw a, 8(c)
M[d last ] := a ⇒
IF a = c THEN label1 ELSE label2 beq a, c , label
LABEL label2 label2 :
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Outline

1. Introduction

2. Instruction selection

3. Register allocation

4. Memory management
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Register allocation

In the IR, we assumed an unlimited number of registers (to ease IR
code generation)

This is obviously not the case on a physical machine (typically, from
5 to 10 general-purpose registers)

Registers can be accessed quickly and operations can be performed
on them directly

Using registers intelligently is therefore a critical step in any
compiler (can make a difference in orders of magnitude)

Register allocation is the process of assigning variables to registers
and managing data transfer in and out of the registers
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Challenges in register allocation

Registers are scarce
I Often substantially more IR variables than registers
I Need to find a way to reuse registers whenever possible

Register management is sometimes complicated
I Each register is made of several small registers (x86)
I There are specific registers which need to be used for some

instructions (x86)
I Some registers are reserved for the assembler or operating systems

(MIPS)
I Some registers must be reserved to handle function calls (all)

Here, we assume only some number of indivisible, general-purpose
registers (MIPS-style)
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A direct solution

Idea: store every value in main memory, loading values only when
they are needed.
To generate a code that performs some computation:

I Generate load instructions to retrieve the values from main memory
into registers

I Generate code to perform the computation on the registers
I Generate store instructions to store the result back into main memory

Example: (with a,b,c,d stored resp. at fp-8, fp-12, fp-16, fp-20)

a := b + c lw t0,−12(fp)
d := a ⇒ lw t1,−16(fp)
c := a + d add t2, t0, t1

sw t2,−8(fp)
lw t0,−8(fp)
sw t0,−20(fp)
lw t0,−8(fp)
lw t1,−20(fp)
add t2, t0, t1

sw t2,−16(f )
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A direct solution

Advantage: very simple, translation is straighforward, never runout
of registers

Disadvantage: very inefficient, waste space and time

Better allocator should:
I try to reduces memory load/store
I reduce total memory usage

Need to answer two questions:
I Which register do we put variables in?
I What do we do when we run out of registers?
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Liveness analysis

A variable is live at some point in the program if its value may be
read later before it is written. It is dead if there is no way its value
can be used in the future.

Two variables can share a register if there is no point in the program
where they are both live

Liveness analysis is the process of determining the live or dead
statuses of all variables throughout the (IR) program

Informally: For an instruction I and a variable t
I If t is used in I , then t is live at the start of I
I If t is assigned a value in I (and does not appear in the RHS of I ),

then t is dead at the start of the I
I If t is live at the end of I and I does not assign a value to t, then t is

live at the start of I
I t is live at the end of I if it is live at the start of any of the

immediately succeding instructions
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Liveness analysis: control-flow graph

First step: construct the control-flow graph

For each instruction numbered i , one defines succ[i ] as follows:
I If instruction j is just after i and j is neither a GOTO or

IF-THEN-ELSE instruction, then j is in succ[i ]
I If i is of the form GOTO l , the instruction with label l is in succ[i ].
I If i is IF p THEN lt ELSE lf , instructions with label lt and lf are both

in succ[i ]

The third rule loosely assumes that both outcomes of the
IF-THEN-ELSE are possible, meaning that some variables will be
claimed live while they are dead (not really a probblem)
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Liveness analysis: control-flow graph

Example (Computation of Fibonacci(n) in a)

9.3. LIVENESS ANALYSIS 195

1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body
7: t := a+b
8: a := b
9: b := t

10: n := n�1
11: z := 0
12: GOTO loop
13: LABEL end

Figure 9.2: Example program for liveness analysis and register allocation

it will be used after the program finishes, even if this is not visible in the code of
the program itself. So we must ensure that the analysis makes this variable live at
the end of the program.

Equation 9.2, similarly, is ill-defined if succ[i] is the empty set (which is, typ-
ically, the case for any instruction that ends the program), so we make a special
case: out[i], where i has no successor, is defined to be the set of all variables that
are live at the end of the program. This definition replaces (for these instructions
only) equation 9.2.

Figure 9.2 shows a small program that we will calculate liveness for. Figure 9.3
shows succ, gen and kill sets for the instructions in the program.

The program in figure 9.2 calculates the Nth Fibonacci number (where N is
given as input by initialising n to N prior to execution). When the program ends
(by reaching instruction 13), a will hold the Nth fibonacci number, so a is live at
the end of the program. Instruction 13 has no successors (succ[13] = /0), so we set
out[13] = {a}. The other out sets are defined by equation 9.2 and all in sets are
defined by equation 9.1. We initialise all in and out sets to the empty set and iterate
until we reach a fixed point.

The order in which we treat the instructions does not matter for the final result
of the iteration, but it may influence how quickly we reach the fixed-point. Since
the information in equations 9.1 and 9.2 flow backwards through the program, it is
a good idea to do the evaluation in reverse instruction order and to calculate out[i]
before in[i]. In the example, this means that we will in each iteration calculate the
sets in the order

196 CHAPTER 9. REGISTER ALLOCATION

i succ[i] gen[i] kill[i]
1 2 a
2 3 b
3 4 z
4 5
5 6,13 n,z
6 7
7 8 a,b t
8 9 b a
9 10 t b

10 11 n n
11 12 z
12 4
13

Figure 9.3: succ, gen and kill for the program in figure 9.2

out[13], in[13], out[12], in[12], . . . ,out[1], in[1]

Figure 9.4 shows the fixed-point iteration using this backwards evaluation order.
Note that the most recent values are used when calculating the right-hand sides of
equations 9.1 and 9.2, so, when a value comes from a higher instruction number,
the value from the same column in figure 9.4 is used.

We see that the result after iteration 3 is the same as after iteration 2, so we have
reached a fixed point. We note that n is live at the start of the program, which is to be
expected, as n is expected to hold the input to the program. If a variable that is not
expected to hold input is live at the start of a program, it might in some executions
of the program be used before it is initialised, which is generally considered an error
(since it can lead to unpredictable results and even security holes). Some compilers
issue warnings about uninitialised variables and some compilers add instructions to
initialise such variables to a default value (usually 0).

Suggested exercises: 9.1(a,b).

9.4 Interference

We can now define precisely the condition needed for two variables to share a
register. We first define interference:
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Liveness analysis: gen and kill
For each IR instruction, we define two functions:

gen[i ]: set of variables that may be read by instruction i

kill [i ]: set of variables that may be assigned a value by instruction i
194 CHAPTER 9. REGISTER ALLOCATION

Instruction i gen[i] kill[i]
LABEL l /0 /0
x := y {y} {x}
x := k /0 {x}
x := unop y {y} {x}
x := unop k /0 {x}
x := y binop z {y,z} {x}
x := y binop k {y} {x}
x := M[y] {y} {x}
x := M[k] /0 {x}
M[x] := y {x,y} /0
M[k] := y {y} /0
GOTO l /0 /0
IF x relop y THEN lt ELSE l f {x,y} /0
x := CALL f (args) args {x}

Figure 9.1: Gen and kill sets

For each instruction i, we use two sets to hold the actual liveness information:
in[i] holds the variables that are live at the start of i, and out[i] holds the variables
that are live at the end of i. We define these by the following equations:

in[i] = gen[i][ (out[i]\ kill[i]) (9.1)

out[i] =
[

j2succ[i]

in[ j] (9.2)

These equations are recursive. We solve these by fixed-point iteration, as shown
in appendix A: We initialise all in[i] and out[i] to be empty sets and repeatedly
calculate new values for these until no changes occur. This will eventually happen,
since we work with sets with finite support (i.e., a finite number of possible values)
and because adding elements to the sets out[i] or in[ j] on the right-hand sides of the
equations can not reduce the number of elements in the sets on the left-hand sides.
Hence, each iteration will either add elements to some set (which we can do only
a finite number of times) or leave all sets unchanged (in which case we are done).
It is also easy to see that the resulting sets form a solution to the equation – the last
iteration essentially verifies that all equations hold. This is a simple extension of
the reasoning used in section 2.6.1.

The equations work under the assumption that all uses of a variable are visible
in the code that is analysed. If a variable contains, e.g., the output of the program,
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Liveness analysis: in and out

For each program instruction i , we use two sets to hold liveness
information:

I in[i ]: the variables that are live before instruction i
I out[i ]: the variables that are live at the end of i

in and out are defined by these two equations:

in[i ] = gen[i ] ∪ (out[i ] \ kill [i ])

out[i ] =
⋃

j∈succ[i ]

in[j ]

These equations can be solved by fixed-point iterations:
I Initialize in[i ] and out[i ] to empty sets
I Iterate over instructions (in reverse order, evaluating out first) until

convergence (i.e., no change)

For the last instruction (succ[i ] = ∅), out[i ] is set of variables that
are live at the end of the program (i.e., used subsequently)
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Illustration9.3. LIVENESS ANALYSIS 195

1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body
7: t := a+b
8: a := b
9: b := t

10: n := n�1
11: z := 0
12: GOTO loop
13: LABEL end

Figure 9.2: Example program for liveness analysis and register allocation

it will be used after the program finishes, even if this is not visible in the code of
the program itself. So we must ensure that the analysis makes this variable live at
the end of the program.

Equation 9.2, similarly, is ill-defined if succ[i] is the empty set (which is, typ-
ically, the case for any instruction that ends the program), so we make a special
case: out[i], where i has no successor, is defined to be the set of all variables that
are live at the end of the program. This definition replaces (for these instructions
only) equation 9.2.

Figure 9.2 shows a small program that we will calculate liveness for. Figure 9.3
shows succ, gen and kill sets for the instructions in the program.

The program in figure 9.2 calculates the Nth Fibonacci number (where N is
given as input by initialising n to N prior to execution). When the program ends
(by reaching instruction 13), a will hold the Nth fibonacci number, so a is live at
the end of the program. Instruction 13 has no successors (succ[13] = /0), so we set
out[13] = {a}. The other out sets are defined by equation 9.2 and all in sets are
defined by equation 9.1. We initialise all in and out sets to the empty set and iterate
until we reach a fixed point.

The order in which we treat the instructions does not matter for the final result
of the iteration, but it may influence how quickly we reach the fixed-point. Since
the information in equations 9.1 and 9.2 flow backwards through the program, it is
a good idea to do the evaluation in reverse instruction order and to calculate out[i]
before in[i]. In the example, this means that we will in each iteration calculate the
sets in the order

196 CHAPTER 9. REGISTER ALLOCATION

i succ[i] gen[i] kill[i]
1 2 a
2 3 b
3 4 z
4 5
5 6,13 n,z
6 7
7 8 a,b t
8 9 b a
9 10 t b

10 11 n n
11 12 z
12 4
13

Figure 9.3: succ, gen and kill for the program in figure 9.2

out[13], in[13], out[12], in[12], . . . ,out[1], in[1]

Figure 9.4 shows the fixed-point iteration using this backwards evaluation order.
Note that the most recent values are used when calculating the right-hand sides of
equations 9.1 and 9.2, so, when a value comes from a higher instruction number,
the value from the same column in figure 9.4 is used.

We see that the result after iteration 3 is the same as after iteration 2, so we have
reached a fixed point. We note that n is live at the start of the program, which is to be
expected, as n is expected to hold the input to the program. If a variable that is not
expected to hold input is live at the start of a program, it might in some executions
of the program be used before it is initialised, which is generally considered an error
(since it can lead to unpredictable results and even security holes). Some compilers
issue warnings about uninitialised variables and some compilers add instructions to
initialise such variables to a default value (usually 0).

Suggested exercises: 9.1(a,b).

9.4 Interference

We can now define precisely the condition needed for two variables to share a
register. We first define interference:

(Mogensen)
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Illustration
9.4. INTERFERENCE 197

Initial Iteration 1 Iteration 2 Iteration 3
i out[i] in[i] out[i] in[i] out[i] in[i] out[i] in[i]
1 n,a n n,a n n,a n
2 n,a,b n,a n,a,b n,a n,a,b n,a
3 n,z,a,b n,a,b n,z,a,b n,a,b n,z,a,b n,a,b
4 n,z,a,b n,z,a,b n,z,a,b n,z,a,b n,z,a,b n,z,a,b
5 a,b,n n,z,a,b a,b,n n,z,a,b a,b,n n,z,a,b
6 a,b,n a,b,n a,b,n a,b,n a,b,n a,b,n
7 b, t,n a,b,n b, t,n a,b,n b, t,n a,b,n
8 t,n b, t,n t,n,a b, t,n t,n,a b, t,n
9 n t,n n,a,b t,n,a n,a,b t,n,a

10 n n,a,b n,a,b n,a,b n,a,b
11 n,z,a,b n,a,b n,z,a,b n,a,b
12 n,z,a,b n,z,a,b n,z,a,b n,z,a,b
13 a a a a a a

Figure 9.4: Fixed-point iteration for liveness analysis

Definition 9.2 A variable x interferes with a variable y if x 6= y and there is an
instruction i such that x 2 kill[i], y 2 out[i] and instruction i is not x := y.

Two different variables can share a register precisely if neither interferes with the
other. This is almost the same as saying that they should not be live at the same
time, but there are small differences:

• After x := y, x and y may be live simultaneously, but as they contain the same
value, they can still share a register.

• It may happen that x is not in out[i] even if x is in kill[i], which means that
we have assigned to x a value that is definitely not read from x later on. In
this case, x is not technically live after instruction i, but it still interferes with
any y in out[i]. This interference prevents an assignment to x overwriting a
live variable y.

The first of these differences is essentially an optimisation that allows more sharing
than otherwise, but the latter is important for preserving correctness. In some cases,
assignments to dead variables can be eliminated, but in other cases the instruction
may have another visible effect (e.g., setting condition flags or accessing memory)
and hence can not be eliminated without changing program behaviour.

(Mogensen)
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Interference

A variable x interferes with another variable y if there is an
instruction i such that x ∈ kill [i ], y ∈ out[i ] and instruction i is not
x := y

Note:
I Different from x ∈ out[i ] and y ∈ out[i ]:
I if x is in kill [i ] and not in out[i ] (because x is never used after an

assignment), then it should interfere with y ∈ out[i ] (to allow
side-effects)

Interference graph: undirected graph where each node is a variable
and two variables are connected if they interfere
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Illustration
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Figure 9.5: Interference graph for the program in figure 9.2

We can use definition 9.2 to generate interference for each assignment state-
ment in the program in figure 9.2:

Instruction Left-hand side Interferes with
1 a n
2 b n,a
3 z n,a,b
7 t b,n
8 a t,n
9 b n,a

10 n a,b
11 z n,a,b

We will do global register allocation, i.e., find for each variable a register that it can
stay in at all points in the program (procedure, actually, since a “program” in terms
of our intermediate language corresponds to a procedure in a high-level language).
This means that, for the purpose of register allocation, two variables interfere if
they do so at any point in the program. Also, even though interference is defined in
an assymetric way in definition 9.2, the conclusion that the two involved variables
cannot share a register is symmetric, so interference defines a symmetric relation
between variables. A variable can never interfere with itself, so the relation is not
reflective.

We can draw interference as an undirected graph, where each node in the graph
is a variable, and there is an edge between nodes x and y if x interferes with y (or
vice versa, as the relation is symmetric). The interference graph for the program in
figure 9.2 is shown in figure 9.5.
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We can use definition 9.2 to generate interference for each assignment state-
ment in the program in figure 9.2:

Instruction Left-hand side Interferes with
1 a n
2 b n,a
3 z n,a,b
7 t b,n
8 a t,n
9 b n,a

10 n a,b
11 z n,a,b

We will do global register allocation, i.e., find for each variable a register that it can
stay in at all points in the program (procedure, actually, since a “program” in terms
of our intermediate language corresponds to a procedure in a high-level language).
This means that, for the purpose of register allocation, two variables interfere if
they do so at any point in the program. Also, even though interference is defined in
an assymetric way in definition 9.2, the conclusion that the two involved variables
cannot share a register is symmetric, so interference defines a symmetric relation
between variables. A variable can never interfere with itself, so the relation is not
reflective.

We can draw interference as an undirected graph, where each node in the graph
is a variable, and there is an edge between nodes x and y if x interferes with y (or
vice versa, as the relation is symmetric). The interference graph for the program in
figure 9.2 is shown in figure 9.5.

(Mogensen)
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Register allocation

Global register allocation: we assign to a variable the same register
throughout the program (or procedure)

How to do it? Assign a register number (among N) to each node of
the interference graph such that

I Two nodes that are connected have different register numbers
I The total number of different register is no higher than the number of

available registers

This is a problem of graph colouring (where colour number =
register number), which is known to be NP-complete

Several heuristics have been proposed
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Chaitin’s algorithm

A heuristic linear algorithm for k-coloring a graph

Algorithm:
I Select a node with fewer than k outgoing edges
I Remove it from the graph
I Recursively color the rest of the graph
I Add the node back in
I Assign it a valid color

Last step is always possible since the removed node has less than k
neighbors in the graph

Implementation: nodes are pushed on a stack as soon as they are
selected
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Chaitin’s algorithm

What if we can not find a node with less than k neighbors?

Choose and remove an arbitrary node, marking it as “troublesome”

When adding node back in, it may still be possible to find a valid
color

Otherwise, we will have to store it in memory.
I This is called spilling.
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Illustration
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Spilling

A spilled variable is stored in memory

When we need a register for a spilled variable v , temporarily evict a
register to memory (since registers are supposed to be exhausted)

When done with that register, write its value to the storage spot for
v (if necessary) and load the old value back

Heuristics to choose the variable/node to spill:
I Pick one with close to N neighbors (increasing the chance to color it)
I Choose a node with many neighbors with close to N neighbors

(increase the chance of less spilling afterwards)
I Choose a variable that’s not costly to spill (by looking at the program)
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Register allocation

We only scratched the surface of register allocation

Many heuristics exist as well as different approaches (not using
graph coloring)

GCC uses a variant of Chaitin’s algorithm
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Outline

1. Introduction

2. Instruction selection

3. Register allocation

4. Memory management
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Memory organization

  5  

segment than the program code, global/static, or stack.  Such memory is called the 
heap.   
 
Here’s a map depicting the address space of an executing program: 
 

Stack 

 

 

Heap 

Global/static data 

Code 

 
 

Runtime Stack 
Each active function call has its own unique stack frame.  In a stack frame (activation 
record) we hold the following information: 

  
1) frame pointer: pointer value of the previous stack frame so we can reset the top 

of stack when we exit this function.  This is also sometimes called the dynamic 
link. 

2) static link: in languages (like Pascal but not C or Decaf) that allow nested 
function declarations, a function may be able to access the variables of the 
function(s) within which it is declared.  In the static link, we hold the pointer 
value of the stack frame in which the current function was declared. 

3) return address: point in the code to which we return at the end of execution of 
the current function. 

4) values of arguments passed to the function and locals and temporaries used in 
the function. 

 

Memory is generally divided into four main parts:

Code: contains the code of the program

Static data: contains static data allocated at compile-time

Stack: used for function calls and local variables

Heap: for the rest (e.g., data allocated at run-time)

Computers have registers that contain addresses that delimits these
different parts
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Static data

Contains data allocated at compile-time

Address of such data is then hardwired in the generated code

Used e.g. in C to allocate global variables

There are facilities in assemblers to allocate such space:
I Example to allocate an array of 4000 bytes

Chapter 12

Memory management

12.1 Introduction

In chapter 7, we mentioned that arrays, records and other multi-word objects could
be allocated either statically, on the stack or in the heap. We will now look into
more detail of how these three kinds of allocation can be implemented and what
their relative merits are.

12.2 Static allocation

Static allocation means that the data is allocated at a place in memory that has both
known size and address at compile time. Furthermore, the allocated memory stays
allocated throughout the execution of the program.

Most modern computers divide their logical address space into a text section
(used for code) and a data section (used for data). Assemblers (programs that con-
vert symbolic machine code into binary machine code) usually maintain “current
address” pointers to both the text area and the data area. They also have pseudo-
instructions (directives) that can place labels at these addresses and move them. So
you can allocate space for, say, an array in the data space by placing a label at the
current-address pointer in the data space and then move the current-address pointer
up by the size of the array. The code can use the label to access the array. Alloca-
tion of space for an array A of 1000 32-bit integers (i.e., 4000 bytes) can look like
this in symbolic code:

.data # go to data area for allocation
baseofA: # label for array A

.space 4000 # move current-address pointer up 4000 bytes

.text # go back to text area for code generation

The base address of the array A is at the label baseofA.

257

Limitations:
I size of the data must be known at compile-time
I Never freed even if the data is only used a fraction of time

Code generation 340



Stack
10.7. ACCESSING NON-LOCAL VARIABLES 225

· · ·
Next activation records
Space for storing local variables for spill
and for storing live variables allocated to
caller-saves registers across function calls
Space for storing callee-saves registers that
are used in the body
Incoming parameters in excess of four
Return address

FP �! Static link (SL)
Previous activation records
· · ·

Figure 10.13: Activation record with static link

f:

· · ·
y
x
Return address

FP! SL (null)
· · ·

g:

· · ·
q
p
Return address

FP! SL (to f)
· · ·

Figure 10.14: Activation records for f and g from figure 10.11

Static links

If there are more than two nested scopes, pointers to all outer scopes need to be
passed as parameters to locally declared functions. If, for example, g declared a lo-
cal function h, h would need pointers to both f’s and g’s activation records. If there
are many nested scopes, this list of extra parameters can be quite long. Typically,
a single parameter is instead used to hold a linked list of the frame pointers for the
outer scopes. This is normally implemented by putting the links in the activation
records themselves. Hence, the first field of an activation record (the field that FP
points to) will point to the activation record of the next outer scope. This is shown
in figure 10.13. The pointer to the next outer scope is called the static link, as
the scope-nesting is static as opposed to the actual sequence of run-time calls that
determine the stacking-order of activation records1. The layout of the activation
records for f and g from figure 10.11 is shown in figure 10.14.

g’s static link will point to the most recent activation record for f. To read y, g
will use the code

1Sometimes, the return address is referred to as the dynamic link.

Mainly used to store activation records for function calls

But can be used to allocate arrays and other data structures (e.g., in
C, to allocate local arrays)

Allocation is quick and easy

But sizes of arrays need to be known at compile-time and can only
be used for local variables (space is freed when the function returns)
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Heap

Used for dynamic memory allocations

Size of arrays or structures need not to be known at compile-time

Array sizes can be increased dynamically

Two ways to manage data allocation/deallocation:
I Manual memory management
I Automatic memory management (or garbage collection)
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Manual memory management

The user is responsible for both data allocation and deallocation
I In C: malloc and free
I In object oriented languages: object constructors and destructors

Advantages:
I Easier to implement than garbage collection
I The programmer can exercice precise control over memory usage

(allows better performances)

Limitations
I The programmer has to exercice precise control over memory usage

(tedious)
I Easily leads to troublesome bugs: memory leaks, double frees,

use-after-frees...
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A simple implementation

Space is allocated by the operating system and then managed by the
program (through library functions such as malloc and free in C)

A free list is maintained with all current free memory blocks
(initially, one big block)

12.5. MANUAL MEMORY MANAGEMENT 261
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(a) The initial free list.
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(c) After freeing the same 12 bytes.

Figure 12.1: Operations on a free list

Malloc:
I Search through the free list for a block of sufficient size
I If found, it is possibly split in two with one removed from free list
I If not found, ask operating system for a new chunck of memory

Free:
I Insert the block back into the free list

Allocation is linear in the size of the free list, deallocation is done in
constant time
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A simple implementation

Block splitting leads to memory fragmentation
I The free list will eventually accumulate many small blocks
I Can be solved by joining consecutive freed blocks
I Makes free linear in free list size

Complexity of malloc can be reduced
I Limit block sizes to power of 2 and have a free list for each size
I Makes malloc logarithmic in heap size

Array resizing can be allowed by using indirection nodes
I When array is resized, it is copied into a new (bigger) block
I Indirection node address is updated accordingly
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Garbage collection

Allocation is still done with malloc or object constructors but
memory is automatically reclaimed

I Data/Objects that won’t be used again are called garbage
I Reclaiming garbage objects automatically is called garbage collection

Advantages:
I Programmer does not have to worry about freeing unused resources

Limitations:
I Programmer can’t reclaim unused resources
I Difficult to implement and add a significant overhead
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Implementation 1: reference counting

Idea: if no pointer to a block exists, the block can safely be freed

Add an extra field in each memory block (of the free list) with a
count of the incoming pointers

I When creating an object, set its counter to 0
I When creating a reference to an object, increment its counter
I When removing a reference, decrement its counter.
I If zero, remove all outgoing references from that object and reclaim

the memory
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Reference counting: illustration

  

Reference Counting in Action

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    

    mid = tail = null;

    head.next.next = null;

    head = null;

}

head 1

mid

2tail

2

  

Reference Counting in Action

class LinkedList {

    LinkedList next;

}

int main() {

    LinkedList head = new LinkedList;

    LinkedList mid = new LinkedList;

    LinkedList tail = new LinkedList;

    head.next = mid;

    mid.next = tail;

    

    mid = tail = null;

    head.next.next = null;

    head = null;

}

(Keith Schwarz)
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Reference counting

Straightforward to implement and can be combined with manual
memory management

Significant overhead when doing assignements for incrementing
counters

Impose constraints on the language
I No pointer to the middle of an object, should be able to distinguish

pointers from integers...

Can not handle circular data structures
I As counters will never be zero
I E.g., doubly-linked lists
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Implementation 2: tracing garbage collectors

Idea: find all reachable blocks from the knowledge of what is
immediately accessible (the root set) and free all other blocks

The root set is the set of memory locations that are known to be
reachable

I all variables in the program: registers, stack-allocated, global
variables. . .

Any objects (resp. not) reachable from the root set are (resp. not)
reachable

  

Mark-and-Sweep In Action

Root Set
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Tracing garbage collection: mark-and-sweep

Mark-and-sweep garbage collection:
I Add a flag to each block
I Marking phase: go through the graph, e.g., depth-first, setting the

flag for all reached blocks
I Sweeping phase: go through the list of blocks and free all unflagged

ones

Implementation of the mark stage with a stack:
I Initialized to the root set
I Retaining reachable blocks that have not yet been visited

Tracing GC is typically called only when a malloc fails to avoid
pauses in the program

Problem: stack requires memory (and a malloc has just failed)
I Marking phase can be implemented without a stack (at the expense

of computing times)
I Typically by adding descriptors within blocks
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Implementation: tracing garbage collection

Advantage:
I More precise than reference counting
I Can handle circular references
I Run time can be made proportional to the number of reachable

objects (typically much lower than number of free blocks)

Disadvantages:
I Introduce huge pause times
I Consume lots of memory
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Garbage collection

Other garbage collection methods:

Two-space collection (stop-and-copying):
I Alternative to free lists
I Two allocation spaces of same size are maintained
I Blocks are always allocated in one space until full
I Garbage collection then copies all live objects to the other space and

swap their roles

Generational collection:
I Maintain several spaces for different generations of objects, with

these spaces of increasing sizes
I Optimized according to the “objects die young” principle

Concurrent and incremental collectors
I Perform collection incrementally or concurrently during execution of

the program
I Avoid long pauses but can reduce the total throughput
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Part 7

Conclusion
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Structure of a compiler

Lexical analysis

Syntax analysis

Semantic analysis

Intermediate code generation

Intermediate code optimization

Code generation

Code optimization

character stream

token stream

syntax tree

syntax tree

intermediate representation

intermediate representation

machine code

machine code
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Summary

Part 1, Introduction:
I Overview and motivation...

Part 2, Lexical analysis:
I Regular expression, finite automata, implementation, Flex...

Part 3, Syntax analysis:
I Context-free grammar, top-down (predictive) parsing, bottom-up

parsing (SLR and operator precedence parsing)...

Part 4, Semantic analysis:
I Syntax-directed translation, abstract syntax tree, type and scope

checking...

Part 5, Intermediate code generation and optimization:
I Intermediate representations, IR code generation, optimization...

Part 6, Code generation:
I Instruction selection, register allocation, liveliness analysis, memory

management...
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More on compilers

Our treatment of each compiler stage was superficial

See reference books for more details (Transp. 4)

Some things we have not discussed at all:
I Specificities of object-oriented or functional programming languages
I Machine dependent code optimization
I Parallelism
I . . .

Related topics:
I Natural language processing
I Domain-specific languages
I . . .
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