Compilateurs

Pierre Geurts

E-mail ©  p-.geurts@ulg.ac.be

URL : http://www.montefiore.ulg.ac.be/
“geurts/compil.html

Bureau : 1 141 (Montefiore)

Téléphone : 04.366.48.15 — 04.366.99.64



Contact information

m Teacher: Pierre Geurts
» p.geurts@ulg.ac.be, 1141 Montefiore, 04/3664815

m Teaching assistant: Vincent Botta
» vincent.botta@ulg.ac.be, CHU GIGA, 04/3669967

m Website:

» Course:
http://wuw.montefiore.ulg.ac.be/~geurts/compil.html

» Project:
http://www.montefiore.ulg.ac.be/~botta/info0085-1


p.geurts@ulg.ac.be
vincent.botta@ulg.ac.be
http://www.montefiore.ulg.ac.be/~geurts/compil.html
http://www.montefiore.ulg.ac.be/~botta/info0085-1

Course organization

m Theoretical course

Wednesday, 14h-16h, R18, Institut Montefiore

About 6-7 lectures

Slides online on the course web page (available before each lecture)
Give you the basis to achieve the project
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m Project
» One (big) project
» Implementation of a compiler (from scratch) for languages of your
choice
» (more on this after the introduction)

m Evaluation

» Almost exclusively on the basis of the project
» Written report, short presentation of your compiler (in front of the
class), oral exam
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Part 1

Introduction



Outline

1. What is a compiler

2. Compiler structure

3. Course project



Compilers

m A compiler is a program (written in a language L.) that:
> reads another program written in a given source language L
» and translates (compiles) it into an equivalent program written in a
second (target) language Lo.

Lg Lo

Le

m The compiler also returns all errors contained in the source program

m Examples of combination:

» Lc=C, Ls =C, Lo=Assembler (gcc)
LC:C, Ls :java, Lo:C
Le=java, Ls =ITEX, Lo=HTML

v vy

m Bootstrapping: L¢c = Ls



Compiler

source program

f

Compiler

'

target program

input —

Target Program

h output




Interpreter

source program
Interpreter output
input

m An interpreter is a program that:
> executes directly the operations specified by the source program on
data provided by the user
m Usually slower at mapping inputs to outputs than compiled code
(but gives better error diagnostics)



Hybrid solution

source program
Translator

intermediate program Virtual

Machine

= output
input

m Hybrid solutions are possible
m Example: Java combines compilation and interpretation

» Java source program is compiled into an intermediate form called
bytecodes

» Bytecodes are then interpreted by a java virtual machine (or compiled
into machine language by just-in-time compilers).

» Main advantage is portability



A broader picture

source program

m Preprocessor: include files,
macros... (sort of small

compilers). modified source program

Preprocessor

m Assembler: generate machine
code from assembly program.

Compiler

1

target assembly program

m Linker: relocates relative
addresses and resolves external Assembler
references.

relocatable machine code

m Loader: loads the executable file

. . library files
In memory for execution.

Linker/Loader relocatable object files

target machine code



Why study compilers?

m There is small chance that you will ever write a full compiler in your
professional carrier.
m Then why study compilers?
» To improve your culture in computer science (not a very good reason)

» To get a better intuition about high-level languages and therefore
become a better coder

» Compilation is not restricted to the translation of computer programs
into assembly code
> Translation between two high-level languages (Java to C++, Lisp to
C, Python to C, etc.)
> Translation between two arbitrary languages, not necessarily
programming ones (word to html, pdf to ps, etc.), aka
source-to-source compilers or transcompilers



Why study compilers?

» The techniques behind compilers are useful for other purposes as well

» Data structures, graph algorithms, parsing techniques, language
theory...

» There is a good chance that a computer scientist will need to write a
compiler or interpreter for a domain-specific language

» Example: database query languages, text-formatting language, scene
description language for ray-tracers, search engine, sed/awk...

» Very nice application of concepts learned in other courses

» Data structures and algorithms, introduction to computability,
computation structures...



General structure of a compiler

m Except in very rare cases, translation can not be done word by word

m Compiler are (now) very structured programs

m Typical structure of a compiler in two stages:
» Front-end/analysis:
> Breaks the source program into constituent pieces
» Detect syntaxic and semantic errors
» Produce an intermediate representation of the language
> Store in a symbol table informations about procedures and variables
of the source program
» Back-end/synthesis:
» Construct the target program from the intermediate representation
and the symbol table
» Typically, the front end is independent of the target language, while
the back end is independent of the source language
» One can have a middle part that optimizes the intermediate
representation (and is thus independent of both the source and target
languages)



General structure of a compiler

source program

Lg

Intermediate representation
Ly

|

target program
Lo



Intermediate representation

The intermediate representation:

m Ensures portability (it's easy to change the source or the target
language by adapting the front-end or back-end).

m Should be at the same time easy to produce from the source
language and easy to translates into the target language

source program source program source program
1 2 3
LS LS LS

| Front-end | | Front-end | | Front-end |

!

Intermediate representation

| Back-end | | Back-end | | Back-end |
|
target program target program target program

Lo L3 L}



Detailed structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l



Lexical analysis or scanning
Input: Character stream = Qutput: token streams

m The lexical analyzer groups the characters into meaningful sequences
called lexemes.
» Example: “position = initial + rate * 60;" is broken into the
lexemes position, =, initial, +, rate, *, 60, and ;.
» (Non-significant blanks and comments are removed during scanning)

m For each lexeme, the lexical analyzer produces as output a token of
the form: (token-name, attribute-value)
» The produced tokens for “position = initial + rate * 60" are
as follows
<ida 1>7 <:>> <ida 2>7 <+>7 <id7 3>’ <*>> <60>

with the symbol table:

1 | position
initial
3 | rate

N




Lexical analysis or scanning

In practice:
m Each token is defined by a regular expression
» Example:
Letter = A—Z]la—z
Digit =0 — 9

Identifier = letter(letter | ) Digit)*

m Lexical analysis is implemented by

> building a non deterministic finite automata from all tokens regular
expressions

> eliminating non determinism

» Simplifying it

m There exist automatic tools to do that
» Examples: lex, flex...



Lexical analysis or scanning

position = initial + rate * 60

f Lexical Analyzer ‘

(id, 1) (=) (id, 2) (+) (id, 3) {*) (60)



Syntax analysis or parsing
Input: token stream = Qutput: syntax tree

m Parsing groups tokens into grammatical phrases

m The result is represented in a parse tree, ie. a tree-like
representation of the grammatical structure of the token stream.
m Example:

» Grammar for assignement statement:
asst-stmt — id = exp ;
exp — number | id | expr 4+ expr

> Resulting parse tree:

assignment
/ Statement \
identifier expression H
1
3 / N
expression + expression
! 1

identifier number
I |
y 3



Syntax analysis or parsing

m The parse tree is often simplified into a (abstract) syntax tree:
X3 +
y 3

m This tree is used as a basis structure for all subsequent phases

m On parsing algorithms:
» Languages are defined by context-free grammars
» Parse and syntax trees are constructed by building automatically a
(kind of ) pushdown automaton from the grammar
» Typically, these algorithms only work for a (large) subclass of
context-free grammars



Lexical versus syntax analysis

m The division between scanning and parsing is somewhat arbitrary.
m Regular expressions could be represented by context-free grammars

m Mathematical expression grammar:

EXPRESSION — EXPRESSION OP2 EXPRESSION
Syntax EXPRESSION — NUMBER

EXPRESSION —  (EXPRESSION)

oP2 Ny oy
Lexical NUMBER —  DIGIT | DIGIT NUMBER

DIGIT —  0[1]2/3/4/5/6/7|8]9

m The main goal of lexical analysis is to simplify the syntax analysis
(and the syntax tree).



Syntax analysis or parsing

position = initial + rate * 60

f Lexical Analyzer I

—
(id, 1) (=) (id,2) (+) (id,3) (x) (60)

! Syntax Analyzer \

e~
(id, 15 +
Gd, 2y TS

Gd, 357 60



Semantic analysis

Input: syntax tree = Output: (augmented) syntax tree

m Context-free grammar can not represent all language constraints,
e.g. non local/context-dependent relations.

m Semantic/contextual analysis checks the source program for
semantic consistency with the language definition.
» A variable can not be used without having been defined
» The same variable can not be defined twice
» The number of arguments of a function should match its definition
» One can not multiply a number and a string
>

(none of these constraints can be represented in a context-free
grammar)



Semantic analysis

m Semantic analysis also carries out type checking:

» Each operator should have matching operands
» In some cases, type conversions (coercions) might be possible (e.g.,

for numbers)
m Example: position = initial + rate * 60
If the variables position, initial, and rate are defined as
floating-point variables and 60 was read as an integer, it may be
converted into a floating-point number.

. _— = ~
(id, 1) +
. / \
(id, 2) DL
id, 3) inttofloat

|
60



Semantic analysis

position = initial + rate * 60

’ Lexical Analyzer 1

(id, 1) (=) (id,2) (+) (id,3) () (60)

’ Syntax Analyzer j
=
(id, 1) +
(id, 2)/ > *

(id, 3y 60
1

‘ Semantic Analyzer —[
Gd, 177 >S4

(id, 2)/ > *
(id, 3y inttofloat
|
60



Intermediate code generation

Input: syntax tree = Qutput: Intermediate representation

m A compiler typically uses one or more intermediate representations

» Syntax trees are a form of intermediate representation used for syntax
and semantic analysis

m After syntax and semantic analysis, many compilers generate a
low-level or machine-like intermediate representation

m Two important properties of this intermediate representation:

» Easy to produce
» Easy to translate into the target machine code



Intermediate code generation

m Example: Three-address code with instructions of the form
X =y op 2.
» Assembly-like instructions with three operands (at most) per
instruction
> Assume an unlimited number of registers

m Translation of the syntax tree

. _— = \
(id, 1) +
Gd,2y” T
(id, 3) inttofloat
|

60

t1 = inttofloat (60)
t2 id3 * t1

t3 = id2 + t2

idl = t3



Intermediate code generation

position = initial + rate * 60

f Lexical Analyzer I

(id, 1) (=) (id,2) (+) (id,3) (x) (60)

! Syntax Analyzer \

R
(id, 1) +
G2y e
(id, 3 60
‘ Semantic Analyzer T
f
a1 T4
(id, 2y

(id, 3{ Inttofloat
|
60
‘ Intermediate Code Generatoﬂ

t1 = inttofloat (60)
t2 = id3 * t1
t3 = id2 + t2

idl = t3



Intermediate code optimization
Input: Intermediate representation = Output: (better) intermediate
representation
m Goal: improve the intermediate code (to get better target code at
the end)

Machine-independent optimization (versus machine-dependent
optimization of the final code)

m Different criteria: efficiency, code simplicity, power consumption. . .
m Example:

tl = inttofloat(60)

t2 = id3 * t1

t3 = id2 + t2

idl = t3

tl = id3 * 60.0
idl = id2 + t1
Optimization is complex and could be very time consuming

Very important step in modern compilers



Intermediate code optimization

position = initial + rate * 60

Lexical Analyzer

‘Ir

(id,1) (=) (id,2) (+) (id,3) (=) (60)

Syntax Analyzer

1I‘

Gd,1y7 TS
(id, 2y > .
(id, 3y 60

Semantic Analyzer

|

Gd,1y S+ -
(id, 2y '
(id,3 inttofloat
|

Intermediate Code Generator

t1 = inttofloat(60)
t2 = id3 * t1

t3 = id2 + t2

id1l = t3

i

Code Optimizer

i

t1 = id3 * 60.0
idl = id2 + t1



Code generation
Input: Intermediate representation = Qutput: target machine code

m From the intermediate code to real assembly code for the target
machine

m Needs to take into account specifities of the target machine, eg.,
number of registers, operators in instruction, memory management.

m One crucial aspect is register allocation

m For our example:

tl = id3 * 60.0
idl = id2 + t1

=

LDF R2, id3

MULF R2, R2, #60.0
LDF R1, id2

ADDF R1, R1, R2
STF id1,R1



Final code generation

Lexical Analyzer

(id,1) (=) (id,2) (+) (id,3) (+) (60)

ar >

N
S+

(id, 25 s
(id,37 60

Semantic Analyzer

(1" T4 —
(id, 2y .
(id,3)  inttofloat
I
60

Intermediate Code Generator

t1 = inttofloat (60)

t2 = id3 * t1
t3 = id2 + t2
id1l = t3

Code Optimizer

t1 = id3 * 60.0
idl = id2 + t1

Code Generator

LDF R2, id3

MULF R2, R2, #60.0
LDF R1, id2

ADDF R1, R1, R2
STF  id1, R1




Symbol table

1 | position
initial
3 | rate

Records the variables names used in the source program
Collects information about each symbol:
» Type information
Storage location (of the variable in the compiled program)
Scope
For function symbol: number and types of arguments and the type
returned

vV vVvYyy

m Needs to allow quick retrieval and storage of a symbol and its
attached information in the table

Implementation by a dictionary structure (binary search tree,
hash-table,...).



Error handling

m Each phase may produce errors.

m A good compiler should report them and provide as much
information as possible to the user.

» Not only “syntax error”.

m ldeally, the compiler should not stop after the first error but should
continue and detect several errors at once (to ease debugging).



Phases and Passes

m The description of the different phases makes them look sequential

m In practice, one can combine several phases into one pass (i.e., one
complete reading of an input file).

m For example:

» One pass through the initial code for lexical analysis, syntax analysis,
semantic analysis, and intermediate code generation (front-end).

» One or several passes through the intermediate representation for
code optimization (optional)

» One pass through the intermediate representation for the machine
code generation (back-end)



Compiler-construction tools

m First compilers were written from scratch, and considered as very
difficult programs to write.
» The first fortran compiler required 18 man-years of work

m There exist now several theoretical tools and softwares to automate
several phases of the compiler.
» Lexical analysis: regular expressions and finite state automata

(Softwares: (f)lex)
» Syntax analysis: grammars and pushdown automata (Softwares:

bison /yacc)

» Semantic analysis and intermediate code generation: syntax directed
translation

» Code optimization: data flow analysis



This course

m Although the back-end is more and more important in modern
compilers, we will insist more on the front-end and general principles

> source-to-source or transcompilers

m Tentative outline:
> Lexical analysis
» Syntax analysis
» Semantic analysis
> Intermediate code generation (syntax directed translation)
» Some notions about code generation



Compiler project

Implement a compiler from scratch
By group of 1, 2, or 3 students
The choice of source and target languages is free

Implementation language L. can be chosen among ¢, c++, java,
python, scheme, and lisp.



Compiler project: languages Lg and L,

m They should not be too simple, nor too complex.
Two bad choices:

» French — Morse code (too simple)
» Python — RISC assembly code (too complex)
m Languages need not to be programming languages

m For L, you can consider a reasonable subset of an otherwise too
complex language

m Examples from previous years:

UML — ITEX

Scheme — Java

Lylipond — Java

Logo — Java/Swing

Toki Pona (google it) — francais

v
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m Choose according to your taste and what you want to learn from
this course !



Course project

m Suggested methodology:
» Write (and potentially simplify) the grammar of the source language
» Design or automatic generation (LEX,...) of the scanner
» Parsing:
» Construction of the shift-reduce table
» Implementation of the parser

v

Write the translation rules. Syntax-directed translation should be
enough in most cases.

m Except for scanning, the use of existing library and data structures is
forbidden.

m Efficiency and correctness of the compiler, as well as clarity of the
code and report are the main evaluation criteria.



Deadlines

(subject to changes)
m Group formation and first idea for the project: 26/02/2012
m Complete project proposition and grammar of the source language:
4/03/2012
Approval of the project: 11/03/2012
Final report: 2/05/2012
Project presentation and demonstration: 9/05/2012

Oral exams: during the June session

m Send all emails to both vincent.botta@ulg.ac.be and
p.geurts@ulg.ac.be (with “[info0085]" in the subject)

m All information about the project:
http://wuw.montefiore.ulg.ac.be/~botta/info0085-1


vincent.botta@ulg.ac.be
p.geurts@ulg.ac.be
http://www.montefiore.ulg.ac.be/~botta/info0085-1

Part 2

Lexical analysis



Outline

1. Principle

2. Regular expressions

3. Analysis with non-deterministic finite automata
4. Analysis with deterministic finite automata

5. Implementing a lexical analyzer



Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l



Lexical analysis or scanning

m Goals of the lexical analysis
» Divide the character stream into meaningful sequences called lexemes.
» Label each lexeme with a token that is passed to the parser (syntax
analysis)
Update the symbol tables with all identifiers (and numbers)
Remove non-significant blanks and comments

m Provide the interface between the source program and the parser

token
source Lexical to semantic
— Parser o .
program Analyzer analysis
getNextToken
Symbol
Table

(Dragonbook)



Example

T While

f

T Ident

T_Ident

]

++

T Ident

ip

z

ip

(win[i[1]e] [(]ifp[ [<[ [z]) Nop\e[+[+]i]p]:]

while (ip < z)

++ip;

(Keith Schwarz)



Example

T While D T Ident T Ident D ++ T Ident

ip z ip

winlifife] [(ilp| [<] [z[)\ap\t[+][+]i]p[;]

while (ip < z)
++ip;

(Keith Schwarz)



Lexical versus syntax analysis

Why separate lexical analysis from parsing?

m Simplicity of design: simplify both the lexical analysis and the syntax
analysis.

m Efficiency: specialized techniques can be applied to improve lexical
analysis.

m Portability: only the scanner needs to communicate with the outside



Tokens, patterns, and lexemes

m A token is a (name, attribute) pair. Attribute might be
multi-valued.

» Example: (/dent, ip), (Operator, <), (*)", NIL)

m A pattern describes the character strings for the lexemes of the
token.

» Example: a string of letters and digits starting with a letter, {<, >,
< > ==} ")

m A lexeme for a token is a sequence of characters that matches the
pattern for the token

» Example: ip, “<”, “)" in the following program
while (ip < z)
++ip



Defining a lexical analysis

1. Define the set of tokens

2. Define a pattern for each token (ie., the set of lexemes associated
with each token)

3. Define an algorithm for cutting the source program into lexemes and
outputs the tokens



Choosing the tokens

m Very much dependent on the source language

m Typical token classes for programming languages:

>

>

>

| 4

>

One token for each keyword

One token for each “punctuation” symbol (left and right parentheses,
comma, semicolon...)

One token for identifiers

Several tokens for the operators

One or more tokens for the constants (numbers or literal strings)

m Attributes

>

>

Allows to encode the lexeme corresponding to the token when
necessary. Example: pointer to the symbol table for identifiers,
constant value for constants.

Not always necessary. Example: keyword, punctuation...



Describing the patterns

m A pattern defines the set of lexemes corresponding to a token.

m A lexeme being a string, a pattern is actually a language.

m Patterns are typically defined through regular expressions (that
define regular languages).
» Sufficient for most tokens
> Lead to efficient scanner



Reminder: languages

m An alphabet ¥ is a set of characters
Example: ¥ = {a, b}
m A string over X is a finite sequence of elements from X
Example: aabba

m A language is a set of strings
Example: L = {a, b, abab, babbba}

m Regular languages: a subset of all languages that can be defined by
regular expressions



Reminder: regular expressions

m Any character a € ¥ is a regular expression L={a}

m € is a regular expression L={e}
m If Ry and Ry are regular expressions, then

» Ry R is a regular expression
L(R1Ry) is the concatenation of L(R1) and L(R2)
» Ri|R> (= RiUR») is a regular expression
L(Ri|Rz) = L(R1) U L(R2)
» Ry is a regular expression
L(Ry) is the Kleene closure of L(Ry)
» (Ry) is a regular expression
L((R1)) = L(R)

m Example: a regular expression for even numbers:

(++] = [€)(0[1[2134]5]6]7[8[9)"(0[2[4[6]8)



Notational conveniences

m Regular definitions:
letter — A|B|...|Z]alb]...|z
digit — 0[1]...]9
id — letter(letter|digit)*
m One or more instances: rt = rr*
m Zero or one instance: r? = r|e
m Character classes:

[abc]=alblc
[a-z]=alb|...|z
[0-9]=0]1]...]9



Examples

m Keywords:

if, while, for, ...
m Identifiers:
[a-zA-Z_][a-zA-Z_0-9]*
m Integers:
[+-]?[0-9]*
m Floats:

[+=17(([0-9]" (-[0-9]")7[.[0-9] ) ([eE][+—]?[0-9]*)?)
m String constants:
“([a-zA-Z0-9]|\ [a-zA-Z])*"



Algorithms for lexical analysis

How to perform lexical analysis from token definitions through
regular expressions?

Regular expressions are equivalent to finite automata, deterministic
(DFA) or non-deterministic (NFA).

Finite automata are easily turned into computer programs

Two methods:
1. Convert the regular expressions to an NFA and simulate the NFA
2. Convert the regular expression to an NFA, convert the NFA to a DFA,
and simulate the DFA.



Reminder: non-deterministic automata (NFA)

A non-deterministic automata is a five-tuple M = (Q, X, A, so, F)
where:

m Q@ is a finite set of states,

m X is an alphabet,

B AC(Qx(XU{e}) x Q) is the transition relation,
m s € Q is the initial state,

m F C Q is the set of accepting states

Example:

a a Transition table

e . State a
1 1] {3}
2 (1.3}
(® N

(Mogensen)

=SS W o
=SS N o



Reminder: from regular expression to NFA

A regular expression can be transformed into an equivalent NFA

(Dragonbook)



Reminder: from regular expression to NFA
Example: (a\b)*ac (Mogensen)

@
O O OO
The NFA N(r) for an expression r is such that:
m N(r) has at most twice as many states as there are operators and
operands in R.
m N(r) has one initial state and one accepting state (with no outgoing
transition from the accepting state and no incoming transition to
the initial state).

m Each (non accepting) state in N(r) has either one outgoing
transition or two outgoing transitions, both on e.



Simulating an NFA

Algorithm to check whether an input string is accepted by the NFA:
1) S = e-closure(sg);
2) ¢ = nextChar();
3) while (¢!=eof) {

4) S = e-closure(move(S,c));
5) ¢ = nextChar();
6)

7) if(SNF!=0)return "yes";
8) else return "no";
(Dragonbook)
m nextChar(): returns the next character on the input stream

m move(S, ¢): returns the set of states that can be reached from
states in S when observing c.

m c-closure(S): returns all states that can be reached with ¢
transitions from states in S.



Lexical analysis

m What we have so far:

» Regular expressions for each token
» NFAs for each token that can recognize the corresponding lexemes
» A way to simulate an NFA

m How to combine these to cut apart the input text and recognize
tokens?
m Two ways:

» Simulate all NFAs in turn (or in parallel) from the current position
and output the token of the first one to get to an accepting state

» Merge all NFAs into a single one with labels of the tokens on the
accepting states



[[lustration

2)
\Z/
6,
O=6

[a-z0-9]
e la-z) @)’ D

m Four tokens: IF=if, ID=[a-z][a-z0-9]*, EQ="=", NUM=[0-9]*

m Lexical analysis of x = 60 yields:

(ID, x), (EQ), (NUM, 60)



lllustration: ambiguities

e la-z] " D

m Lexical analysis of ifu26 = 60
m Many splits are possible:

(IF), (ID, u26), (EQ), (NUM, 60)

(ID, ifu26), (EQ), (NUM, 60)
(ID, ifu), (NUM, 26), (EQ), (NUM, 6), (NUM, 0)



Conflict resolutions

m Principle of the longest matching prefix: we choose the longest
prefix of the input that matches any token

m Following this principle, ifu26 = 60 will be split into:

(ID, ifu26), (EQ), (NUM, 60)

m How to implement?

» Run all NFAs in parallel, keeping track of the last accepting state
reached by any of the NFAs

» When all automata get stuck, report the last match and restart the
search at that point

m Requires to retain the characters read since the last match to
re-insert them on the input

> In our example, '=" would be read and then re-inserted in the buffer.



Other source of ambiguity

m A lexeme can be accepted by two NFAs
» Example: keywords are often also identifiers (if in the example)

m Two solutions:
» Report an error (such conflict is not allowed in the language)
» Let the user decide on a priority order on the tokens (eg., keywords
have priority over identifiers)



What if nothing matches

m What if we can not reach any accepting states given the current
input?

m Add a “catch-all” rule that matches any character and reports an

~O—0—0
@

[0-9]
O

[a-z0-9]

ID

oS

(®
@ by

®




Merging all automata into a single NFA

m In practice, all NFAs are merged and simulated as a single NFA

m Accepting states are labeled with the token name




Lexical analysis with an NFA: summary

Construct NFAs for all regular expression

Merge them into one automaton by adding a new start state

| |
| |
m Scan the input, keeping track of the last known match
m Break ties by choosing higher-precedence matches

[

Have a catch-all rule to handle errors



Computational efficiency

1)
2)
3)
4)
5)
6)
7)
8)

S = e-closure(sg);

¢ = nextChar();

while (¢ != eof ) {
S = e-closure(move(S,c));
¢ = nextChar();

if (SN F!=0) return "yes";
else return "no";

(Dragonbook)

m In the worst case, an NFA with |Q| states takes O(|S||Q|?) time to
match a string of length |S]

m Complexity thus depends on the number of states

m It is possible to reduce complexity of matching to O(|S]) by
transforming the NFA into an equivalent deterministic finite

automaton (DFA)



Reminder: deterministic finite automaton

m Like an NFA but the transition relation A C (Q x (X J{e}) x Q) is
such that:

» Transitions based on € are not allowed
» Each state have at most one outgoing transition defined for every
letter

m Transition relation is replaced by a transition function
0:QxX—Q

m Example of a DFA

a
‘a b

(Mogensen)



Reminder: from NFA to DFA

m DFA and NFA (and regular expressions) have the same expressive
power
m An NFA can be converted into a DFA by the subset construction
method
m Main idea: mimic the simulation of the NFA with a DFA
» Every state of the resulting DFA corresponds to a set of states of the
NFA. First state is e-closure(sp).
» Transition between states of DFA correspond to transitions between
set of states in the NFA:

4(S, ¢) = e-closure(move(S, c))

» A set of the DFA is accepting if any of the NFA states that it
contains is accepting

m See INFOO0016 or the reference book for more details



Reminder: from NFA to DFA

NFA
(alb)*ac

DFA
sh {1,2,5,6,7}

s\ {3,8,1,2,5,6,7}
s, {8,1,2,5,6,7}
s3 {4}

(Mogensen)



Simulating a DFA

s = 8o,
¢ = nextChar();
while ( ¢ != eof ) {
s = move(s,c);
¢ = nextChar();

if ( sisin F ) return "yes";
else return "no";

m Time complexity is O(|S|) for a string of length |S|

m Now independent of the number of states



Lexical analysis with a DFA: summary

Construct NFAs for all regular expressions

Mark the accepting states of the NFAs by the name of the tokens
they accept

Merge them into one automaton by adding a new start state
Convert the combined NFA to a DFA

Convey the accepting state labeling of the NFAs to the DFA (by
taking into account precedence rules)

Scanning is similar as with an NFA



Example: combined NFA for several tokens

[a-zA-Z 0-9]

- 0-9
/7\ [+-1] @E 1 @
NUM

€ €

[0-9]
- 0-9 /&
SV RN

FLOAT
. [eE]
[0-9] [eE]

(Mogensen)



Example: combined DFA for several tokens

@ [a-zA-Z 0-9]
[a-zA-Z_0-9]
Try lexing on the strings:
m if17
[0-9] m 3e-y
FLOAT

/ w] [0-9]
oY e /

FLOAT



Speed versus memory

m The number of states of a DFA can grow exponentially with respect
to the size of the corresponding regular expression (or NFA)

m We have to choose between low-memory and slow NFAs and
high-memory and fast DFAs.

Note:
m It is possible to minimise the number of states of a DFA in
O(nlog n) (Hopcroft's algorithm?)
» Theory says that any regular language has a unique minimal DFA
» However, the number of states may remain exponential in the size of
the regular expression after minimization

'http://en.wikipedia.org/wiki/DFA_minimization


http://en.wikipedia.org/wiki/DFA_minimization

Summary

Kleene
construction

Token
patterns Analyzer
v minimization
Regular

expressions EETETPRN W > DFA

Thompson’s NFA
construction determinization



Some langage specificities
Language specificities that make lexical analysis hard:
m Whitespaces are irrelevant in Fortran.
DO5TI=1,25
DO5I = 1.25

m PL/1: keywords can be used as identifiers:
IF THEN THEN THEN = ELSE; ELSE ELSE = IF

m Python block defined by indentation:

if w == z:
a=>b

else:
e = f

g=nh

(the lexical analyser needs to record current identation and output a
token for each increase/decrease in indentation)

(Keith Schwarz)



Implementing a lexical analyzer

m In practice (and for your project), two ways:

» Write an ad-hoc analyser
» Use automatic tools like (F)LEX.

m First approach usually gives a more efficient solution but is more
tedious

m Second approach is less efficient but is more portable



Example of an ad-hoc lexical analyser

(source: http://dragonbook.stanford.edu/lecture-notes.html)

Definition of the token classes (through constants)

#define T SEMICOLON ';' // use ASCII values for single char tokens
#define T LPAREN ' (
#define T RPAREN '
#define T_ASSIGN '
#define T_DIVIDE '

#define T_WHILE 257 // reserved words
#define T_IF 258
#define T_RETURN 259

#define T IDENTIFIER 268 // identifiers, constants, etc.
#define T INTEGER 269
#define T DOUBLE 270
#define T STRING 271

#define T END 349 // code used when at end of file
#define T UNKNOWN 350 // token was unrecognized by scanner


http://dragonbook.stanford.edu/lecture-notes.html

Example of an ad-hoc lexical analyser

Structure for tokens

struct token_ t {

int type;

union {
char stringValue[256];
int intValue;
double doubleValue;

} val;

}:
Main function

int main(int argc,

{

//

//
//
//

one of the token codes from above

holds lexeme value if string/identifier
holds lexeme value if integer
holds lexeme value if double

char *argv([])

struct token_t token;

InitScanner () ;

while (ScanOneToken (stdin, &token) != T _END)
; // this is where you would process each token

return O0;



Example of an ad-hoc lexical analyser

Initialization

static void InitScanner ()
{
create_reserved table(); // table maps reserved words to token type
insert reserved("WHILE", T WHILE)
insert reserved("IF", T_IF)
insert_reserved ("RETURN", T RETURN)



Example of an ad-hoc lexical analyser

Scanning (single-char tokens)

static int ScanOneToken (FILE *fp, struct token t *token)
{

int i, ch, nextch;

ch = getc(fp); // read next char from input stream
while (isspace (ch)) // if necessary, keep reading til non-space char
ch = getc(fp); // (discard any white space)

switch (ch) {

case '/': // could either begin comment or T DIVIDE op
nextch = getc (fp);
if (nextch == '/' || nextch == '*")

; // here you would skip over the comment
else
ungetc (nextch, fp); // fall-through to single-char token case
case ';': case ',': case '=': // ... and other single char tokens
token->type = ch; // ASCII value is used as token type
return ch; // ASCII value used as token type



Example of an ad-hoc lexical analyser

Scanning: keywords

case 'A': case 'B': case 'C': // ... and other upper letters
token->val.stringValue[0] = ch;
for (i = 1; isupper(ch = getc(fp)); i++) // gather uppercase
token->val.stringValue[i] = ch;
ungetc(ch, fp);
token->val.stringValue[i] = '\0'; // lookup reserved word

token->type = lookup reserved(token->val.stringValue);
return token->type;

Scanning: identifier

case 'a': case 'b': case 'c¢': // ... and other lower letters
token->type = T IDENTIFIER;
token->val.stringValue[0] = ch;
for (i = 1; islower (ch = getc(fp)); i++)

token->val.stringValue[i] = ch; // gather lowercase

ungetc (ch, fp);
token->val.stringValue[i] = '\0';
if (lookup symtab (token->val.stringValue) == NULL)

add_symtab (token->val.stringValue); // get symbol for ident
return T IDENTIFIER;



Example of an ad-hoc lexical analyser

Scanning: number

case '0': case 'l': case '2': case '3': //.... and other digits
token->type = T INTEGER;
token->val.intValue = ch - '0';
while (isdigit(ch = getc(fp))) // convert digit char to number
token->val.intValue = token->val.intValue * 10 + ch - '0';

ungetc (ch, fp);
return T INTEGER;

Scanning: EOF and default

case EOF:
return T END;

default: // anything else is not recognized
token->val.intValue = ch;
token->type = T UNKNOWN;
return T UNKNOWN;



Flex

m flex is a free implementation of the Unix lex program
m flex implements what we have seen:
> |t takes regular expressions as input
It generates a combined NFA
It converts it to an equivalent DFA
It minimizes the automaton as much as possible
It generates C code that implements it
It handles conflict with the longest matching prefix principles and an
preference order on the tokens.

vV vy VY VvYy

m More information
» http://flex.sourceforge.net/manual/


http://flex.sourceforge.net/manual/

Input file

m Input files are structured as follows:
3

Declarations
h
Definitions
YA

Rules

W

User subroutines
m Declarations and User subroutines are copied without modification
to the generated C file.
m Definitions specify options and name definition (to simplify the rules)

m Rules: specify the patterns for the tokens to be recognized



Rules

m In the form:
patternl actionl
pattern2 action2

m Patterns are defined as regular expressions. Actions are blocks of ¢
code.

m When a sequence is read that matches the pattern, the c code of
the action is executed

m Examples:

[0-9]+ {printf("This is a number");}
[a-z]+ {printf("This is symbol");}



Regular expressions

m Many shortcut notations are permitted in regular expressions:

» [1, -, +, *, 7. as defined previously

» .: a dot matches any character (except newline)

» ["x]: matches the complement of the set of characters in x (ex: all
non-digit characters [~0-9]).

» x{n,m}: x repeated between n and m times

» "x": matches x even if x contains special characters (ex: "x*"
matches x followed by a star).

» {name}: replace with the pattern defined earlier in the definition
section of the input file



Interacting with the scanner

m User subroutines and action may interact with the generated scanner
through global variables:

» yylex: scan tokens from the global input file yyin (defaults to
stdin). Continues until it reaches the end of the file or one of its
actions executes a return statement.

» yytext: a null-terminated string (of length yyleng) containing the
text of the lexeme just recognized.

» yylval: store the attributes of the token

» yylloc: location of the tokens in the input file (line and column)



Example 1: hiding numbers

m hide-digits.I:
hh
[0-9]+ printf("?");
. ECHO;

m To build and run the program:
% flex hide-digits.l
% gcc -o hide-digits lex.yy.c 11
% ./hide-digits



Example 2: wc

m count.l:
w{
int numChars = 0, numWords = O, numLines = 0;
W
Wt
\n {numLines++; numChars++;}

[~ \t\nl+ {numWords++; numChars += yyleng;}
{numChars++;}

hh

int main() {

yylex();
printf ("%d\t%d\t%d\n", numChars, numWords, numLines);

}

m To build and run the program:

% flex count.l
% gcc -o count lex.yy.c 11
% ./count < count.l



Example 3: typical compiler
W

/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions */

delim [ \t\n]

ws {delim}+

letter [A-Za-z]

digit [0-91

id {letter}({letter}|{digit})*

number {digitI+(\.{digit}+) 7(E[+-]?{digit}+)?

Wh

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN) ; }

else {return(ELSE) ; }

{id} {yylval = (int) installID(); return(ID);}
{number} {yylval = (int) installNum(); return(NUMBER);}
" {yylval = LT; return(RELOP);}

ng=n {yylval = LE; return(RELOP);}

"=t {yylval = EQ; return(RELOP);}

e {yylval = NE; return(RELOP);}

" {yylval = GT; return(RELOP);}

"= {vvlval = GE: return(REL.NP):}



Example 3: typical compiler

User defined subroutines
%h

int installID() {/# function to install the lexeme, whose
first character is pointed to by yytext,
and whose length is yyleng, into the
symbol table and return a pointer
thereto */

}

int installNum() {/* similar to installID, but puts numer-
ical constants into a separate table */

}



Part 3

Syntax analysis



Outline

1. Introduction

2. Context-free grammar

3. Top-down parsing

4. Bottom-up parsing



Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l



Syntax analysis
token

source | Lexical | parse i Rest of intermediate
—— Parser “----! -
program | Analyzer ' tree ! Front End |representation
get next ! !

token

Symbol
Table

m Goals:
» recombine the tokens provided by the lexical analysis into a structure
(called a syntax tree)
> Reject invalid texts by reporting syntax errors.
m Like lexical analysis, syntax analysis is based on

> the definition of valid texts based on some formal languages,
> the derivation of an algorithm to detect valid words from this
language

Formal language: context-free grammars

m Two main algorithm families: Top-down parsing and Bottom-up
parsing



Example

T While

f

T Ident

T_Ident

]

++

T Ident

ip

z

ip

(win[i[1]e] [(]ifp[ [<[ [z]) Nop\e[+[+]i]p]:]

while (ip < z)

++ip;

(Keith Schwarz)



Example

T While D T Ident T Ident D ++ T Ident

ip z ip

winlifife] [(ilp| [<] [z[)\ap\t[+][+]i]p[;]

while (ip < z)
++ip;

(Keith Schwarz)



Reminder: grammar

m A grammar is a 4-tuple G = (V,X,R,S), where:
» V is an alphabet,
» ¥ Cis the set of terminal symbols (V — X is the set of nonterminal
symbols),
» RC (VT x V*)is a finite set of production rules
» S €V — % is the start symbol.
m Notations:
> Nonterminal symbols are represented by uppercase letter: A,B,. ..
» Terminal symbols are represented by lowercase letters: a,b,. ..
» Start symbol written as S
» Empty word: €
» Arule (o,0) e R:a—
Rule combination: A — «|f3
m Exemple: X ={a,b,b}, V-X={S R}, R=
R
aSc

€

RbR

v

=l IV
A



Reminder: derivation and language

Definitions:

m v can be derived in one step from u by G (noted v = u) iff
u=xuy, v=xvy, and vV — vV

m v can be derived in several steps from u by G (noted v = u) iff
Jk>0and vp... v € VT such that u = vg, v = v, v; = vj 1 for
0<i<k

m The language generated by a grammar G is the set of words that
can be derived from the start symbol:

L={wex*S=>w)
Example: derivation of aabcc from the previous grammar

T = alc= aalcc = aaRcc = aaRbRcc = aabRcc = aabcc



Reminder: type of grammars

Chomski's grammar hierarchy:

m Type O: free or unrestricted grammars
m Type 1: context sensitive grammars

» productions of the form uXw — uvw, where u, v, w are arbitrary
strings of symbols in V/, with v non-null, and X a single nonterminal

m Type 2: context-free grammars (CFG)
» productions of the form X — v where v is an arbitrary string of
symbols in V/, and X a single nonterminal.
m Type 3: regular grammars

» Productions of the form X — a, X — aY or X — ¢ where X and Y
are nonterminals and a is a terminal (equivalent to regular expressions
and finite state automata)



Context-free grammars

m Regular languages are too limited for representing programming
languages.
m Examples of languages not representable by a regular expression:
» L={a"b"|n > 0}
» Balanced parentheses

L={e0,(0), 00, (0N (D)0 ---}

» Scheme programs
L=1{1,2,3,...,(lambda(x)(+x1))}

m Context-free grammars are typically used for describing
programming language syntaxes.
» They are sufficient for most language
» They lead to efficient parsing algorithms



Context-free grammars for programming languages

m Nonterminals of the grammars are typically the token derived by the

lexical analysis (in bold in rules)

m Divide the language into several syntactic categories (sub-languages)

m Common syntactic categories

» Expressions: calculation of values
» Statements: express actions that occur in a particular sequence
» Declarations: express properties of names used in other parts of the

program

Exp
Exp
Exp
Exp
Exp
Exp
Exp

el bbbl

Exp + Exp
Exp — Exp
Exp x Exp
Exp/Exp
num

id

(Exp)

Stat
Stat
Stat
Stat

Ll

id := Exp

Stat; Stat

if Exp then Stat Else Stat
if Exp then Stat



Derivation for context-free grammar

m Like for a general grammar

m Because there is only one nonterminal in the LHS of each rule, their
order of application does not matter
m Two particular derivations

> left-most: always expand first the left-most nonterminal
(important for parsing)

> right-most: always expand first the right-most nonterminal
(canonical derivation)

m Examples

Left-most derivation:
S = aTb = acS5b = accSb =
S — aTblc accaTbb = accaSbb = accacbb

T — cSS|S Right-most derivation:

S = aTb = acSSb = acSaTbb =

= bb
w = accac acSaSbb = acSacbb = accacbb



Parse tree

A parse tree abstracts the order of application of the rules
» Each interior node represents the application of a production
» For arule A— X1 X5... X, the interior node is labeled by A and the
children from left to right by X1, X5, ..., Xk.
» Leaves are labeled by nonterminals or terminals and read from left to
right represent a string generated by the grammar

A derivation encodes how to produce the input

A parse tree encodes the structure of the input

Syntax analysis = recovering the parse tree from the tokens



Parse trees

S — aTb|c
T — cS5|S

w = accacbb

Left-most derivation:
S = aTb = acS5Sb = accSb =
accaTbb = accaSbb = accacbb

Right-most derivation:
S = aTb = acSSb = acSaTbb =
acSaSbb = acSacbb = accacbb



Parse tree

T — R
T — alc
R — ¢
R — RbR
SN /N
SN, N
‘ a ‘T c
R/l‘)\R R/:\R
R/IL\R i {‘i R/}‘J\R
N 2N



Ambiguity

m The order of derivation does not matter but the chosen production
rules does

m Definition: A CFG is ambiguous if there is at least one string with
two or more parse trees

m Ambiguity is not problematic when dealing with flat strings. It is
when dealing with language semantics




Detecting and solving Ambiguity

m There is no mechanical way to determine if a grammar is
(un)ambiguous (this is an undecidable problem)

m In most practical cases however, it is easy to detect and prove
ambiguity.
E.g., any grammar containting N — NaN is ambiguous (two parse
trees for NaNal).
m How to deal with ambiguity?
» Modify the grammar to make it unambiguous
» Handle these ambiguity in the parsing algorithm
m Two common sources of ambiguity in programming languages

» Expression syntax (operator precedences)
» Dangling else



Operator precedence

m This expression grammar is ambiguous

(it contains N — Nal)

m Parsing of 2+ 3 x4

Exp

FExp
*

Exp

Eaxp

4

Exp
Exp
Exp
Exp
Exp
Exp

e bl

Exp + Exp

Exp — Exp

Exp * Exp

Exp/Exp

num

(Exp)

Ezp\
ef |
L Exp



Operator associativity

m Types of operator associativity:
» An operator @ is left-associative if a ® b @ ¢ must be evaluated from
left to right, i.e., as (a® b) ® ¢
» An operator & is right-associative if a® b ® ¢ must be evaluated
from right to left, i.e., as a® (b P ¢)
» An operator @ is non-associative if expressions of the form a® b ® ¢
are not allowed
m Examples:
» — and / are typically left-associative
» + and * are mathematically associative (left or right). By convention,
we take them left-associative as well
» List construction in functional languages is right-associative
» Arrows operator in C is right-associative (a->b->c is equivalent to
a->(b->c))
» In Pascal, comparison operators are non-associative (you can not
write 2 < 3 < 4)



Rewriting ambiguous expression grammars

m Let's consider the following ambiguous grammar:

E - EQE

E — num

m If @ is left-associative, we rewrite it as a left-recursive (a recursive
reference only to the left). If & is right-associative, we rewrite it as
a right-recursive (a recursive reference only to the right).

@ left-associative @ right-associative
E — EoF E — E®E
E — F E — F

E' — num E' — num



Mixing operators of different precedence levels

m Introduce a different nonterminal for each precedence level

Exp
Exp
Exp
Exp
Exp
Exp

Ambiguous

Exp + Exp
Exp — Exp
Exp « Exp
Exp/Exp
num

(Exp)

A

Non-ambiguous

Exp
Exp
Exp
Exp2
Exp2
Exp2
Exp3
Exp3

e bbbl

Exp + Exp2
Exp — Exp2
Exp2

Exp2 x Exp3
Exp2/Exp3

Exp3

num

(Exp)

Parse tree for 2 +3 % 4

Exp
/1N
Exp + Exp2
Ex‘pZEpo l Exp3
Exp3 Ex‘p3 4‘1
P



Dangling else
m Else part of a condition is typically optional

Stat —  if Exp then Stat Else Stat
Stat — if Exp then Stat

m How to match if p then if q then s1 else s27
m Convention: else matches the closest not previously matched if.
m Unambiguous grammar:

Stat —  Stat|Unmatched
Matched — if Exp then Matched else Matched
Matched — " Any other statement”
Unmatched — if Exp then Stat
Unmatched — if Exp then Matched else Unmatched



End-of-file marker

m Parsers must read not only terminal symbols such as +,—, num ,
but also the end-of-file

m We typically use $ to represent end of file

m If S is the start symbol of the grammar, then a new start symbol S’
is added with the following rules S’ — S$.

S —  Exp$
Exp — Exp+ Exp2
Exp — Exp — Exp2
Exp — Exp2
Exp2 — Exp2x Exp3
Exp2 — Exp2/Exp3
Exp2 — Exp3
Exp3 — num
Exp3 — (Exp)



Non-context free languages

m Some syntactic constructs from typical programming languages
cannot be specified with CFG
m Example 1: ensuring that a variable is declared before its use
» Ly = {wew|w is in (a|b)*} is not context-free
» In C and Java, there is one token for all identifiers
m Example 2: checking that a function is called with the right number
of arguments
» L, ={a"b™c"d™|n > 1 and m > 1} is not context-free
» In C, the grammar does not count the number of function arguments

stmt — id (expr_list)
expr_list — expr_list, expr

| expr

m These constructs are typically dealt with during semantic analysis



Backus-Naur Form

m A text format for describing context-free languages

m We ask you to provide the source grammar for your project in this

format

m Exemple:
<expression> ::= <term> | <term> "+" <expression>
<term> ::= <factor> | <factor> "*" <term>
<factor> = <constant> | <variable> | "(" <expression> ")"
<variable> "x" ] y" | 2"
<constant> <digit> | <digit> <constant>
<digit> mpt | tav | m2® | 3" | "4" | s | ve" | "7 | "g" | "g"

m More information:
http://en.wikipedia.org/wiki/Backus-Naur_form
http://www.montefiore.ulg.ac.be/~botta/info0085-1/


http://en.wikipedia.org/wiki/Backus-Naur_form
http://www.montefiore.ulg.ac.be/~botta/info0085-1/

Outline

3. Top-down parsing



Syntax analysis

m Goals:
» Checking that a program is accepted by the context-free grammar
» Building the parse tree
» Reporting syntax errors

m Two ways:

» Top-down: from the start symbol to the word
» Bottom-up: from the word to the start symbol



Top-down and bottom-up: example

Grammar:

S — AB
A — aAle
B — b|bB

Top-down parsing of aaab

S

AB
aAB
aaAB
aaaAB
aaaeB
aaab

S — AB
A — aA
A — aA
A — aA
A—ce€

B—b

Bottom-up parsing of aaab

aaab
aaaeb
aaaAb
aaAb
aAb
Ab
AB

)

(insert €)
A—e€
A — aA
A — 3A
A — aA
B—b
S — AB



A naive top-down parser

m A very naive parsing algorithm:

» Generate all possible parse trees until you get one that matches your
input
» To generate all parse trees:
1. Start with the root of the parse tree (the start symbol of the
grammar)
2. Choose a non-terminal A at one leaf of the current parse tree
3. Choose a production having that non-terminal as LHS, eg.,
A— X1 Xo. .. Xy
4. Expand the tree by making Xi,Xz,...,Xk, the children of A.
Repeat at step 2 until all leaves are terminals
6. Repeat the whole procedure by changing the productions chosen at
step 3

@

( Note: the choice of the non-terminal in Step 2 is irrevelant for a
context-free grammar)

m This algorithm is very inefficient, does not always terminate, etc.



Top-down parsing with backtracking

m Modifications of the previous algorithm:

1. Depth-first development of the parse tree (corresponding to a
left-most derivation)

2. Process the terminals in the RHS during the development of the tree,
checking that they match the input

3. If they don't at some step, stop expansion and restart at the previous
terminal with another productions rules (backtracking)

m Depth-first can be implemented by storing the unprocessed symbols
on a stack

m Because of the left-most derivation, the inputs can be processed
from left to right



Backtracking example

> > 0 O»n

Stack Inputs Action
S becd Try S — bab
bab becd match b
—  bab ab cd dead-end, backtrack
s bA S becd Try S — bA
bA becd match b
— d
A cd TryA—d
— A d cd dead-end, backtrack
A cd Try A— CcA
cA cd match ¢
w = bed A d TryA—d
d d match d

Success!



Top-down parsing with backtracking

m General algorithm (to match a word w):
Create a stack with the start symbol

X = pPop()
a = GETNEXTTOKEN()
while (True)

if (X is a nonterminal)
Pick next rule to expand X — Y1Ya2... Yk
Push Yk, Yk—1,..., Y1 on the stack
X = pop()
elseif (X ==% and a==9)
Accept the input
elseif (X == a)
a = GETNEXTTOKEN()
X = pop()
else
Backtrack

m Ok for small grammars but still untractable and very slow for large
grammars
m Worst-case exponential time in case of syntax error



Another example

aSbT

Ll

~ 4 94 n 1 »n

w = accbbadbc

Stack Inputs  Action
S accbbadbc Try § — aSbT
aSbT  accbbadbc match a
SbT  accbbadbc Try S — aSbT
aSbTbT  accbbadbc match a
SbTbT  ccbbadbc Try S — ¢cT
cTbTbT ccbbadbc  match ¢
TbTbT cbbadbc Try T — ¢
cbThbT cbbadbc  match cb
TbT badbc Try T — bS
bSbT badbc match b
SbT adbc Try S — aSbT
aSbT adbc match a
c ¢ match ¢
Success!



Predictive parsing

m Predictive parser:
> In the previous example, the production rule to apply can be predicted
based solely on the next input symbol and the current nonterminal
» Much faster than backtracking but this trick works only for some
specific grammars

m Grammars for which top-down predictive parsing is possible by
looking at the next symbol are called LL(1) grammars:
> L: left-to-right scan of the tokens
> L: leftmost derivation
> (1): One token of lookahead
m Predicted rules are stored in a parsing table M:

» MJX, a] stores the rule to apply when the nonterminal X is on the
stack and the next input terminal is a



Example: parse table

S—>ES$
E — int
E— (EOpE)
Op — +
Op — *

int

( ) +

ES

ES

int

(EOpE)

(Keith Schwarz)



Example: successfull parsing

S (int + (int * int))$

1.8 > E$ Es (int + (int * int))$
2.E - int (EOpE)$ (int + (int * int))s$
3.E— (EOpE) _EOpE)s ::Lnt+ (:ﬁ.nt*:ﬁ.nt))s
4 Op—> + int OpE) $ int + (J_.nt * ?nt))s

’ OpE)s$ + (int * int))$
5.0p — - +E)S + (int * int))$
E)S (int * int))$

int| (| ) |+ | * | § (EOpE))S$ (int * int))$
EOpE))$ int * int))$

S 1 int OpE))$ int * int))$
E|l23 OpE))$ * int))$
*E))$ * int))$

Op 415 E))S int))$
int))$ int))$

))$ ))$

)$ )$

$ $

(Keith Schwarz)



Example: erroneous parsing

1.S—>ES$
2.E - int
3.E— (EOpE)
4.0p— +
5 0p— -

S (int (int))$

ES$ (int (int))$
(EOpE)$ (int (int))$
EOpE)$ int (int))$
int OpE) $ int (int))$
OpE)$ (int)) $

int ) |+ | *

2

Op

(

y

3
| BBE

(Keith Schwarz)



Table-driven predictive parser

Predictive
Parsing
Program

I Output

l

Parsing
Table

(Dragonbook)



Table-driven predictive parser

Create a stack with the start symbol

X = Pop()
a = GETNEXTTOKEN()
while (True)

if (X is a nonterminal)
if (M[X,a] == NULL)
Error
elseif (M[X,a] ==X — Y1Y2...Y))
Push Yk, Yi—1,..., Y1 on the stack
X = pop()
elseif (X ==% and a==19)
Accept the input

elseif (X == a)
a = GETNEXTTOKEN()
X = pop()

else

Error



LL(1) grammars and parsing

Three questions we need to address:
m How to build the table for a given grammars?
m How to know if a grammar is LL(1)?

m How to change a grammar to make it LL(1)?



Building the table

m It is useful to define three functions
(with A a nonterminal and « any sequence of grammar symbols):
> Nullable(c) is true if o = ¢

> First() returns the set of terminals ¢ such that o = c7y for some
(possibly empty) sequence v of grammar symbols

» Follow(A) returns the set of terminals a such that S = aAafS, where
« and (3 are (possibly empty) sequences of grammar symbols

N
o c/; B

(c € First(A) and a € Follow(A))



Building the table from First, Follow, and Nullable

To construct the table:
m Start with the empty table

m For each production A — o
» add A — «a to MJ[A, a] for each terminal a in First(«)
» If Nullable(c), add A — « to M[A, a] for each a in Follow(A)

First rule is obvious. lllustration of the second rule:

S — Ab Nullable(A) = True
A — ¢ First(A) = {c} M[A,b] = A—c¢
A — ¢ FO”OW(A) = {b}



LL(1) grammars

m Three situations:
» MIJA, a] is empty: no production is appropriate. We can not parse the
sentence and have to report a syntax error
» MI[A, 3] contains one entry: perfect !
» MI[A, 3] contains two entries: the grammar is not appropriate for
predictive parsing (with one token lookahead)
m Definition: A grammar is LL(1) if its parsing table contains at most

one entry in each cell or, equivalently, if for all production pairs
A— alf

» First(c) N First(3) = 0,

» Nullable(c) and Nullable(3) are not both true,

» if Nullable((3), then First(a) N Follow(A) = ()

m Example of a non LL(1) grammar:

S — Ab
A — b
A — ¢



Computing Nullable

Algorithm to compute Nullable for all grammar symbols

Initialize Nullable to False.
repeat
for each production X — Y1Y5... Yk
if Y1...Y are all nullable (or if kK =0)
Nullable(X) = True
until Nullable did not change in this iteration.

Algorithm to compute Nullable for any string aa = X1 X5 ...

if (X1...Xk are all nullable)
Nullable(«) = True
else
Nullable(«) = False



Computing First

Algorithm to compute First for all grammar symbols

Initialize First to empty sets. for each terminal Z

First(Z) = {Z}
repeat

for each production X — Y1Y5... Yk

fori =1to k
if Yi...Y;_y are all nullable (or i = 1)
First(X) = First(X) U First(Y;)

until First did not change in this iteration.

Algorithm to compute First for any string a = X1 .X5.. ..

Initialize First(a) =0
for i = 1to k
if Yi...Yi_1 are all nullable (or i = 1)
First(a)) = First(a) U First(X;)



Computing Follow

To compute Follow for all nonterminal symbols

Initialize Follow to empty sets.
repeat
for each production X — Y1Ys... Yk
fori=1to k, forj=i+1tok
if Yii1... Yk are all nullable (or i = k)
Follow(Y;) = Follow(Y;) U Follow(X)
if Yit1...Yj_1 are all nullable (or i +1 =)
Follow(Y;) = Follow(Y;) U First(Y;)
until Follow did not change in this iteration.



Example
Compute the parsing table for the following grammar:

S — E$

E — TFE
E' — +TF
El — —TF
E' — ¢

T — FT
T — xFT’
T — JFT'
T — ¢

F —- id

F — num
F — (E)



Example

Nonterminals | Nullable First Follow

S False {(, id , num } 0

E False {(, id , num } {).$}

E True {+,-} {).8}

T False {(, id , num } 0,+,—,$}

T True {*7/} {)7+7_7$}

F False {(, id, num} {),=*/,+,—,%}

+ * id ( ) $

S S — ES$ S — ES$
E E—-TE E—-TE
E | El - 4+TE E' ¢ E —e¢
T T—FT' T—FT
T T —e¢ T — xFT’ T —e T —e
F F — id F — (E)

(=./, and num are treated similarly)



LL(1) parsing summary so far

Construction of a LL(1) parser from a CFG grammar
m Eliminate ambiguity
m Add an extra start production S’ — S$ to the grammar

m Calculate First for every production and Follow for every
nonterminal

Calculate the parsing table
Check that the grammar is LL(1)

Next course:
m Transformations of a grammar to make it LL(1)
m Recursive implementation of the predictive parser

m Bottom-up parsing techniques



Transforming a grammar for LL(1) parsing

m Ambiguous grammars are not LL(1) but unambiguous grammars are
not necessarily LL(1)

m Having a non-LL(1) unambiguous grammar for a language does not
mean that this language is not LL(1).

m But there are languages for which there exist unambiguous
context-free grammars but no LL(1) grammar.

m We will see two grammar transformations that improve the chance
to get a LL(1) grammar:
» Elimination of left-recursion
> Left-factorization



Left-recursion

m The following expression grammar is unambiguous but it is not

LL(1):

Exp — Exp+ Exp2
Exp — Exp— Exp2
Exp — Exp2

Exp2 — Exp2x Exp3

Exp2 — Exp2/Exp3

Exp2 — Exp3

Exp3 — num

Exp3 — (Exp)

m Indeed, First(c) is the same for all RHS « of the productions for
Exp et Exp2

m This is a consequence of left-recursion.



Left-recursion

m Recursive productions are productions defined in terms of
themselves. Examples: A — Ab ou A — bA.

m When the recursive nonterminal is at the left (resp. right), the
production is said to be left-recursive (resp. right-recursive).

m Left-recursive productions can be rewritten with right-recursive
productions

m Example:
N N
N — Nog - A
- N N
N = N, ’ — ﬁn,\//
— (651
N —
B N
: N N
N — B, am

N/

l



Right-recursive expression grammar

Exp
Exp
Exp
Exp2
Exp2
Exp2
Exp3
Exp3

oLl

Exp + Exp2
Exp — Exp2
Exp2

Exp2 x Exp3
Exp2/Exp3

Exp3

num

(Exp)

Exp
Exp
Exp
Exp
Exp?2

Exp2’
Exp?2’
Exp2’
Exp3
Exp3

e bbbl

Exp2Exp’
+Exp2Exp’
—Exp2Exp’
€

Exp3Exp2’
*Exp3 Exp2’
/ Exp3Exp2’
€

num
(Exp)



Left-factorisation
m The RHS of these two productions have the same First set.

Stat — if Exp then Stat else Stat
Stat —  if Exp then Stat

m The problem can be solved by left factorising the grammar:

Stat —  if Exp then Stat ElseStat
ElseStat —  else Stat
ElseStat — €

m Note
» The resulting grammar is ambiguous and the parsing table will
contain two rules for M[ElseStat, else]
(because else € Follow(ElseStat) and else € First(else Stat))
» Ambiguity can be solved in this case by letting
M|ElseStat, else] = { ElseStat — else Stat}.



Hidden left-factors and hidden left recursion

m Sometimes, left-factors or left recursion are hidden
m Examples:
» The following grammar:

A — dalacB
B — abB|daA|Af

has two overlapping productions: B — daA and B = daf .
» The following grammar:

S — Tulwx
T — Sq|ws

has left recursion on T (T = Tuq)

m Solution: expand the production rules by substitution to make
left-recursion or left factors visible and then eliminate them



Summary

Construction of a LL(1) parser from a CFG grammar

Eliminate ambiguity

Eliminate left recursion

left factorization

Add an extra start production S’ — S$ to the grammar

Calculate First for every production and Follow for every
nonterminal

Calculate the parsing table
Check that the grammar is LL(1)



Recursive implementation

m From the parsing table, it is easy to implement a
recursively (with one function per nonterminal)

T — TS function parseT’() =

T — R if next = ’a’ or next =

T — aTc parseT() ; match(’$’)

R — e else reportError()

R — bR

function parseT() =
if next = ’b’ or next =
N b c $ parseR()

T = 7% T = T% TS T% else if next = ’a’ then
T|T—alc TR T—R T—R match(’a’) ; parseT()
R R—bR R—e€ R— e

else reportError()

function parseR() =
if next = ’c’ or next =

(x do nothing *)
else if next = ’b’ then
match(’b’) ; parseR()

else reportError()

predictive parser

’b’ or next = ’$’ then

’c’ or next = ’$’ then

; match(’c?)

’$’ then

(Mogensen)



Outline

4. Bottom-up parsing



Bottom-up parsing

m A bottom-up parser creates the parse tree starting from the leaves
towards the root

m It tries to convert the program into the start symbol

m Most common form of bottom-up parsing: shift-reduce parsing



Bottom-up parsing: example

Bottum-up parsing of
int + (int 4 int + int)

Grammar:
S —- E
E —- T
E —-— E+ T
T — int
r — (E)

+ i

(Keith Schwarz)



Bottom-up parsing: example

Bottum-up parsing of
int 4 (int + int + int):

Grammar: int + (int 4 int 4 int)$
+ (int + int 4 int)$
s — E + (int + int + int)$
E — T + (T + int + int)$
E - E+ T + (E + int + int)$
T o int +(E+ T +int)$
E t
T = (F) EEi I;))
E+ (E)$
E+T$
ES
S

Top-down parsing is often done as a rightmost derivation in reverse
(There is only one if the grammar is unambiguous).



Terminology

m A Rightmost (canonical) derivation is a derivation where the
rightmost nonterminal is replaced at each step. A rightmost
derivation from « to 8 is noted a =, 3.

m A reduction transforms uwv to uAv if A — w is a production

m « is a right sentential form if S =, o avec a = Ox where x is a
string of terminals.

m A handle of a right sentential form v (= afBw) is a production
A — (3 and a position in v where 3 may be found and replaced by A
to produce the previous right-sentential form in a rightmost
derivation of ~:
S, AW =, affw

» Informally, a handle is a production we can reverse without getting
stuck.
> If the handle is A — (3, we will also call 3 the handle.



Handle: example

Bottum-up parsing of
int + (int 4 int + int)

Grammar: int + (int 4 int 4 int)$
+ (int + int + int)$
S — E + (int + int + int)$
E — T + (T + int + int)$
E — E+ T + (E + int + int)$
T o int +(E+ T +int)$
+ (E + int)$
T = (F) +(E+T)$
E+( )$
E+TS$
E$
S

The handle is in red in each right sentential form



Finding the handles

m Bottom-up parsing = finding the handle in the right sentential form
obtained at each step

m This handle is unique as soon as the grammar is unambiguous
(because in this case, the rightmost derivation is unique)

m Suppose that our current form is uvw and the handle is A — v
(getting uAw after reduction). w can not contain any nonterminals
(otherwise we would have reduced a handle somewhere in w)



Shift/reduce parsing

Proposed model for a bottom-up parser:
m Split the input into two parts:
» Left substring is our work area
» Right substring is the input we have not yet processed
m All handles are reduced in the left substring

m Right substring consists only of terminals
m At each point, decide whether to:

» Move a terminal across the split (shift)
» Reduce a handle (reduce)



Shift/reduce parsing:

Grammar:
E —- E4+ T|T

T — T« F|F
F — (E)id

Bottum-up parsing of
id + id * id

example

Left substring  Right substring  Action

$ id + id x id$  Shift

$id +id * id$ Reduce by F — id
$F +id * id$ Reduceby T — F

$T +id * id$ Reduceby E — T

$SE +id = id$  Shift

$SE+ id x id$  Shift

$E + id xid$  Reduce by F — id
$SE+F xid$ Reduceby T — F
$SE+ T xid$  Shift

$E + Tx* id$  Shift

$SE+ T xid $ Reduceby F — id
$SE+ T = F $ Reduceby T — T xF
$SE+ T $ Reduceby E—-E+ T
$E $  Accept



Shift/reduce parsing

m In the previous example, all the handles were to the far right end of
the left area (not inside)

m This is convenient because we then never need to shift from the left
to the right and thus could process the input from left-to-right in
one pass.

m Is it the case for all grammars? Yes !
m Sketch of proof: by induction on the number of reduces
» After no reduce, the first reduction can be done at the right end of
the left area
> After at least one reduce, the very right of the left area is a
nonterminal (by induction hypothesis). This nonterminal must be

part of the next reduction, since we are tracing a rightmost derivation
backwards.



Shift/reduce parsing

m Consequence: the left area can be represented by a stack (as all
activities happen at its far right)

m Four possible actions of a shift-reduce parser:

. Shift: push the next terminal onto the stack

Reduce: Replace the handle on the stack by the nonterminal

. Accept: parsing is successfully completed

Error: discover a syntax error and call an error recovery routine

Ll A



Shift/reduce parsing

m There still remain two open questions: At each step:
» How to choose between shift and reduce?
» If the decision is to reduce, which rules to choose (i.e., what is the
handle)?
m ldeally, we would like this choice to be deterministic given the stack
and the next k input symbols (to avoid backtracking), with k
typically small (to make parsing efficient)

m Like for top-down parsing, this is not possible for all grammars

m Possible conflicts:

» shift/reduce conflict: it is not possible to decide between shifting or
reducing

» reduce/reduce conflict: the parser can not decide which of several
reductions to make



Shift/reduce parsing

We will see two main categories of shift-reduce parsers:
m LR-parsers

» They cover a wide range of grammars
» Different variants from the most specific to the most general: SLR,
LALR, LR

m Weak precedence parsers

» They work only for a small class of grammars
» They are less efficient than LR-parsers
» They are simpler to implement



LR-parsers

m LR(k) parsing: Left-to-right, Rightmost derivation, k symbols
lookahead.
m Advantages:
» The most general non-backtracking shift-reduce parsing, yet as
efficient as other less general techniques
» Can detect syntactic error as soon as possible (on a left-to-right scan
of the input)
» Can recognize virtually all programming language constructs (that
can be represented by context-free grammars)
» Grammars recognized by LR parsers is a proper subset of grammars
recognized by predictive parsers (LL(k) C LR(k))
m Drawbacks:

» More complex to implement than predictive (or operator precedence)
parsers

m Like table-driven predictive parsing, LR parsing is based on a parsing
table.



Structure of a LR parser

input a, | .. |a | .. la, |$
stack
Sm
X \
= LR Parsing Algorithm |—————output
Sm—l
Xl /\
. Action Table Goto Table
Sl terminals and $ non-terminal
X1 S S
t four different t each item is
SO a actions a a state number
t t
e e
s s




Structure of a LR parser

m A configuration of a LR parser is described by the status of its stack
and the part of the input not analysed (shifted) yet:

(50X151 . Xmsm, didi+1--- a,,$)

where X; are (terminal or nonterminal) symbols, a; are terminal
symbols, and s; are state numbers (of a DFA)

m A configuration corresponds to the right sentential form
X1...Xmaj...an

m Analysis is based on two tables:
» an action table that associates an action ACTION(s, a] to each state
s and nonterminal a.
» a goto table that gives the next state GOTO[s, A] from state s after
a reduction to a nonterminal A



Actions of a LR-parser

m Let us assume the parser is in configuration
(50X151 . Xmsm, didi41--- a,,$)

(initially, the state is (so, a1az ...an$), where a; ... a, is the input
word)
m ACTION]sp, a;] can take four values:

1. Shift s: shifts the next input symbol and then the state s on the
stack (soXis1... XmSm, @idit1-..an) — (s0X181 ... Xmais, ai+1 ... an)
2. Reduce A — 3 (denoted by rn where n is a production number)
> Pop 2|3] (= r) items from the stack
> Push A and s where s = GOTO[sp—r, A]
(soXisi...XmSm, @idi41...an) —
(soXisi... Xm—rSm—rAs, aidiy1 ... an)
> Output the prediction A — (3
3. Accept: parsing is successfully completed
4. Error: parser detected an error (typically an empty entry in the action
table).



LR-parsing algorithm

Create a stack with the start state sp
a = GETNEXTTOKEN()
while (True)
s = poP()
if (ACTION[s, a] = shift t)
Push a and t onto the stack
a = GETNEXTTOKEN()
elseif (ACTION[s, a] = reduce A — f3)
Pop 2|3| elements off the stack
Let state t now be the state on the top of the stack
Push GOTO[t, A] onto the stack
Output A — 38
elseif (ACTION[s, a] = accept)
break / Parsing is over
else call error-recovery routine



Example: parsing table for the expression grammar

o~ wh =

E—-E+T
E—T
T—TxF
T—F
F — (E)
F— id

Action Table Goto Table

state | id + * ( ) $ E T F

0 s5 s4 1 2|3

1 s6 acc

2 12 | s7 2 | 2

3 4 | r4 4 | 4

4 s5 s4 8 2|3

5 16 | 16 16 | 16

6 s5 s4 9 |3

7 s5 s4 10

8 s6 sl

9 rl s7 rl rl

10 3| 3 3| 3

11 5| 15 5 5




Example: LR parsing with the expression grammar

stack

0

0id5

OF3

0T2
0T2*7
0T2*71d5
0T2*7F10
0T2

OE1
OE1+6
OE1+6id5
OE1+6F3
OE1+6T9
OE1

input
id*id+id$
*id+id$
*id+id$
*id+id$
id+id$
+id$
+id$
+id$
+id$
id$

$
$
$
$

action

shift 5

reduce by F—id
reduce by T—F
shift 7

shift 5

reduce by F—id
reduce by T—=T*F
reduce by E—=T
shift 6

shift 5

reduce by F—id
reduce by T—F
reduce by E—=E+T

accept

output

F—id
T—F

F—id
T—T*F

F—id
T—F
E—E+T



Constructing the parsing tables

m There are several ways of building the parsing tables, among which:
» LR(0): no lookahead, works for only very few grammars
» SLR: the simplest one with one symbol lookahead. Works with less
grammars than the next ones
» LR(1): very powerful but generate potentially very large tables
» LALR(1): tradeoff between the other approaches in terms of power
and simplicity
» LR(k), k> 1: exploit more lookahead symbols
m LALR(1) is used in parser generators like Yacc

m We will only see SLR in this course

m Main idea of all methods: build a DFA whose states keep track of
where we are in a parse



LR(0) item

m An LR(0) item (or item for short) of a grammar G is a production of
G with a dot at some position of the body.

m Example: A — XYZ yields four items:
A— XYZ
A— X.YZ
A— XY .Z
A— XYZ.
(A — € generates one item A — .)

m An item indicates how much of a production we have seen at a
given point in the parsing process.

» A — X.YZ means we have just seen on the input a string derivable
from X (and we hope to get next YZ).

m Each state of the SLR parser will correspond to a set of LR(0) items

m A particular collection of sets of LR(0) items (the canonical LR(0)
collection) is the basis for constructing SLR parsers



Construction of the canonical LR(0) collection

m The grammar G is first augmented into a grammar G’ with a new
start symbol S’ and a production S’ — S where S is the start
symbol of G

m We need to define two functions:

» CLOSURE(/): extends the set of items / when some of them have a
dot to the left of a nonterminal
» GoTO(/, X): moves the dot past the symbol X in all items in /
m These two functions will help define a DFA:

» whose states are (closed) sets of items
» whose transitions (on terminal and nonterminal symbols) are defined
by the GoTO function



CLOSURE

Example:

E' - E
E—E+T
E—T
T—TxF
T—F
F—>(E)
F— id

CLOSURE(/)

for any item A — a.Xg in /
for any production X —
I =1U{X — .~}
until / does not change

CLOSURE({E" — .E})

{E' — .E,
E— E+T
E—.T
T—.Tx*xF
T — .F
F — (E)
F—.id



GoTo

Example:

E' - E ho
E—E+T
E—T
T—TxF
T—F
F—(E)

F— id

Goto(l, X)
Set J to the empty set
for any item A — a. X3 in |
J = JU{A — aX.5}
return CLOSURE(J)

{E' — .E,

coto(lo, E)={E' - E,E—E.+ T}
E=E+T Goro(l,T)={E— T, T — T.%F}
E—.T Gcoro(l, F) = {T — F.}
T — .T+«F Goro(h, (") = CLoSURE({F — (.E)})

T F ={F—=(E)}U(b\{E' — E})
GoTOo(l,id) = {F — id.}
F — .(E)

F—.id



Construction of the canonical collection

C = {CLOSURE({S' — .5})
repeat
for each item set [ in C
for each item A — a. X3 in |
C = CuGoro(l, X)
until C did not change in this iteration
return C

m Collect all sets of items reachable from the initial state by one or
several applications of GOTO.

m ltem sets in C are the state of a DFA, GOTO is its transition function



Example

lo: E' — .E,
E— E+T
E—.T
T—.TxF
T —.F
F — .(E)
F—.id

L: E'—E. + lo: E—E+.T lo: E—~E+T.
E—-E+T T—.TxF F T—>T.%F
T—.F
s] + F—(E)  H— *
accept F—.id id
bh: E—T.
T—>T.xF L T—Tx.F
F— (E) F .
F—id F for T TR
| id =——
Is: F—id. id
T F=(E)
ly: F— (.E) E—E.+F hi: F—(E).
E— E+T
E—.T
T— .T+F
T —.F (
F — (E)
F—.id (
F

L: T —F.
j —



Constructing the LR(0) parsing table

1. Construct C = {ly, h,...,In}, the collection of sets of LR(0) items
for G’ (the augmented grammar)

2. State i of the parser is derived from [;. Actions for state / are as
follows:
2.1 f A— a.afisin l; and GoTO(l;, a) = I;, then ACTION[i, a] = Shift j
22 If A— a.isin [;, then set ACTION[i, a] = Reduce A — « for all

terminals a.
23 If S’ — S.isin I;, then set ACTION[i,$] = Accept

3. If coro(l;, X) = Ij, then GOTO[i, X] = j.
4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state s is the set of items containing S’ — .S

= LR(0) because the chosen action (shift or reduce) only depends on
the current state



Example of a LR(0) grammar

S — S$
S —> (L)
S —>x
L—S
L—L,S

O 00NN B W =

1

S'—>.S$ L’S%x, <«<—L —>1L,.S
S —.(L) L S —.(L)
S => .x S = (.L) S => .x
L >.S T
L —-.L,S 5
(Cs —.(L) S > (L.)
. S = .x L >L..S
[s>s.s ] ) I
L—>s. | [s =) |
( ) X $ S L
s3 s2 a4
2 2 2 2 r2
s3 s2 g7 a5
a
s6 s8
rl rl rl rl rl
3 r3 r3 3 r3
s3 s2 29
4 r4 r4 4 r4

s 9
T

(Appel)



Example of a non LR(0) grammar

Io:

E' — .E,
E— E+T
E—.T
T—.T+F
T—.F
F — (E)
F—.id

E h: E'—E. + lo: E—~E+.T ly: E—-E+T.
E—E+T T—.TxF F T—T.xF
T F £
$] + F—(6) H— ¥
accept F—.id d
T h: E=T.
- *
T—TxF i T—Tx.F
E:(Iﬁ) HF .illgz T—TxF.
id
'diillg: F—id. I‘* i
+
lg: F—(E.)
TT Iy: F— (.E) E E—E4+F hi: F—(E)
E— E+T
( E—.T
T .TxF
T .F (
F — .(E)
F—.id (
F

Conflict: in state 2, we don't know whether to shift or reduce.




Constructing the SLR parsing tables

1. Construct ¢ = {lp, h,...,In}, the collection of sets of LR(0) items
for G’ (the augmented grammar)

2. State i of the parser is derived from [;. Actions for state / are as
follows:
2.1 If A— a.af isin l; and GoTO(l;, a) = I;, then ACTION[i, a] = Shift j
22 If A— a.isin I;, then ACTION[i, a] = Reduce A — « for all
terminals a in Follow(A) where A # S’
23 If 8" — S.isin I;, then set ACTION[i,$] = Accept

3. If GoTo(l;, A) = I; for a nonterminal A, then GOTO[i, Al =
4. All entries not defined by rules (2) and (3) are made “error”

5. The initial state sy is the set of items containing S’ — .S

= the simplest form of one symbol lookahead, SLR (Simple LR)



Example

Action Table Goto Table
state | id | + * ( ) $ E | T |F
0 s5 s4 1 2 3
1 s6 acc
2 r2 s7 r2 2
3 4 | r4 4 | r4
4 s5 s4 8 213
5 6 | 16 6 | 16
6 s5 s4 9 |3
7 s5 s4 10
8 s6 sll
9 rl s7 rl | rl
‘ First ‘ Follow 10 B3| 3 3| 3
E | id ( $ + ) 11 5 | 15 5 | 15
Tlid( [$+*)
Flid( |$+%*)




SLR(1) grammars

m A grammar for which there is no (shift/reduce or reduce/reduce)
conflict during the construction of the SLR table is called SLR(1)
(or SLR in short).

m All SLR grammars are unambiguous but many unambiguous
grammars are not SLR

m There are more SLR grammars than LL(1) grammars but there are
LL(1) grammars that are not SLR.



Conflict example for SLR parsing

S 5> L=R|R Iy §'=-S L L—id
L - xR |id §—+L=R
R = L S—-R I S—L=R
L—-xR R—-L
L—id L— xR
R L L—-id
Li: §—=8S I;: L — =R
Iy S—»L-=R Iy: R— L-
R— L
Iy: S—»L=R
I3Z S — R
[4f L~ *R
R— L
L—-xR
L — -id
(Dragonbook)
Follow(R) contains '=". In k, when seeing '=" on the input, we don't

know whether to shift or to reduce with R — L.



Summary of SLR parsing

Construction of a SLR parser from a CFG grammar

Eliminate ambiguity (or not, see later)
Add the production S’ — S, where S is the start symbol of the
grammar

Compute the LR(0) canonical collection of LR(0) item sets and the
GoToO function (transition function)

Add a shift action in the action table for transitions on terminals
and goto actions in the goto table for transitions on nonterminals

Compute Follow for each nonterminals (which implies first adding
S§"” — §’$ to the grammar and computing First and Nullable)

Add the reduce actions in the action table according to Follow

Check that the grammar is SLR (and if not, try to resolve conflicts,
see later)



Hierarchy of grammar classes

Unambiguous Grammars Ambiguous
Grammars

(Appel)



Next week

End of syntax analysis
m Operator precedence parsing
m Error detection and recovery

m Building the parse tree



Operator precedence parsing

Bottom-up parsing methods that follow the idea of shift-reduce
parsers

Several flavors: operator, simple, and weak precedence.

In this course, only weak precedence

m Main differences with respect to LR parsers:

» There is no explicit state associated to the parser (and thus no state
pushed on the stack)

» The decision of whether to shift or reduce is taken based solely on the
symbol on the top of the stack and the next input symbol (and stored
in a shift-reduce table)

> In case of reduction, the handle is the longest sequence at the top of
stack matching the RHS of a rule



Structure of the weak precedence parser

stack

Xon—1

Xm

X

X1

input | a1 a; an| §

Weak precedence parsing

——— > output

Shift-reduce table

terminals and $

Shift/Reduce/Error

terminals,
nonterminals and $




Weak precedence parsing algorithm

Create a stack with the special symbol $
a = GETNEXTTOKEN()
while (True)
if (Stack==3$S and a==%)
break / Parsing is over
Xm = TOP(Stack)
if (SRT[Xm, a] = shift)
Push a onto the stack
a = GETNEXTTOKEN()
elseif (SRT[Xn, a] = reduce)
Search for the longest RHS that matches the top of the stack
if no match found
call error-recovery routine
Let denote this rule by Y — Xp_ry1... Xm
Pop r elements off the stack
Push Y onto the stack
Output Y — Xp—r41... Xm
else call error-recovery routine



Example for the expression grammar

Example:

E—E+T
E—T
T—TxF
T—F
F — (E)
F— id

Shift/reduce table

L [« +[C[)[id][$
E S S R
T S| R R R
F R | R R R
* S S
+ S S
( S S
)y TR R R R
id R | R R R
$ S S




Example of parsing

Stack Input  Action

$ id + id x id$  Shift

$id +id x id$  Reduce by F — id
$F +id % id$ Reduceby T — F

$T +id * id$ Reduceby E — T

$E +id x id$  Shift

$E+ id x id$  Shift

$E + id xid$ Reduce by F — id
$E+F xid$ Reduceby T — F
$SE+ T xid$  Shift

$E + T« id$  Shift

$E+ T xid $ Reduce by F — id
$E4+TxF $ Reduceby T — TxF
SE+ T $ Reduceby E—-E+ T
$E $  Accept



Precedence relation: principle

m We define the (weak precedence) relations < and > between
symbols of the grammar (terminals or nonterminals)
» X < Y if XY appears in the RHS of a rule or if X precedes a
reducible word whose leftmost symbol is Y
» X > Y if X is the rightmost symbol of a reducible word and Y the
symbol immediately following that word

m Shift when X, < a, reduce when X, > a

m Reducing changes the precedence relation only at the top of the
stack (there is thus no need to shift backward)



Precedence relation: formal definition

m Let G=(V,X,R,S) be a context-free grammar and $ a new
symbol acting as left and right end-marker for the input word.
Define V/ = V U {$}

m The weak precedence relations < and > are defined respectively on
V' x V and V x V' as follows:

1. X<YifA—aXBBisin R, and B = Y+,
2. X<YifA—=aXYfisin R
3. $< X if S+ Xa

4. X»>aif A— aBfisin R, and B:+>7Xandﬂ:*>av
5 X»>$if S5 aX
for some «, 3, 7y, and B



Construction of the SR table: shift

Shift relation, <:

Initialize S to the empty set.
1 add$<StoS
2 for each production X — LiLy...Lg
fori=1tok—-1
add L; < L,'+1 to S
3 repeat
for each* pair X < Y in S
for each production Y — LiL,... Lk
Add X <L;to S
until § did not change in this iteration.

* We only need to consider the pairs X < Y with Y a nonterminal that were added in

S at the previous iteration



Example of the expression grammar:

E—-E+T
E—T
T—TxF
T—F
F—>(E)
F— id

Step 1

S<$

Step 2

E<+
+<T
T < x
* << F
(<E
E<)

Step 3.1

+<F
* < id
* << (
(<«T

Step 3.2

+<id
+<(
(<F

Step 3.3

(<(
(<id

shift



Construction of the SR table: reduce

Reduce relation, >:

Initialize R to the empty set.
1 addS>$toR
2 for each production X — Lil;... L,
for each pair X <Y in S
add Ly > Y in R
3 repeat
for each™ pair X > Y in R
for each production X — LiLy... L,
Add Ly > Y to R
until R did not change in this iteration.

* We only need to consider the pairs X > Y with X a nonterminal that were added in

R at the previous iteration.



Example of the expression grammar: reduce

Step 1 E>$
Step2 T >+

F > x

T>)

Step3.1 T>$
E—-E4+T F>+
E—-T ) > x
T—TxF id > x
T—F F>)
F — (E) Step 32 F>$
F— id ) >+
id > +

)>)

id>)

Step33 id>$
)>$



Weak precedence grammars

m Weak precedence grammars are those that can be analysed by a
weak precedence parser.

m A grammar G = (V,X,R,S) is called a weak precedence grammar
if it satisfies the following conditions:

1.
2.
3.

There exist no pair of productions with the same right hand side
There are no empty right hand sides (A — )

There is at most one weak precedence relation between any two
symbols

4. Whenever there are two syntactic rules of the form A — aX( and
B — 3, we don't have X < B

m Conditions 1 and 2 are easy to check

m Conditions 3 and 4 can be checked by constructing the SR table.



Example of the expression grammar

E—E+T
E—T
T—TxF
T—F
F — (E)
F— id

m Conditions 1-3 are satisfied (there is no conflict in the SR table)
m Condition 4:

» E— E+ T and E — T but we don't have + < E (see slide 202)
» T — TxFand T — F but we don't have * < T (see slide 202)

Shift/reduce table

L [«[+[C])[id]S
E S S R
T S| R R R
F R | R R R
* S S
+ S S
( S S
Yy TRTR R R
id R | R R R
$ S S




Removing ¢ rules

m Removing rules of the form A — ¢ is not difficult

m For each rule with A in the RHS, add a set of new rules consisting
of the different combinations of A replaced or not with e.

m Example:

)
!

AbA|B
b|c

A — ¢

o
!

is transformed into

S — AbA|Ab|bA|b|B
B — b|c



Summary of weak precedence parsing

Construction of a weak precedence parser
m Eliminate ambiguity (or not, see later)

m Eliminate productions with € and ensure that there are no two
productions with identical RHS

m Construct the shift/reduce table
m Check that there are no conflict during the construction
m Check condition 4 of slide 205



Using ambiguous grammars with bottom-up parsers

m All grammars used in the construction of Shift/Reduce parsing
tables must be un-ambiguous

m We can still create a parsing table for an ambiguous grammar but
there will be conflicts

m We can often resolve these conflicts in favor of one of the choices to
disambiguate the grammar
m Why use an ambiguous grammar?
» Because the ambiguous grammar is much more natural and the

corresponding unambiguous one can be very complex
» Using an ambiguous grammar may eliminate unnecessary reductions

m Example:
E—-E+T|T
E—E+EExE|(E)id = T—T=xF|F
F — (E)|id



Set of LR(0) items of the ambiguous expression grammar

Iy: E' —-E Is: E— Ex-E
E— -E+E E— E+E
E— -ExFE E— -ExE
E - (E) E — (E)
E—.id E —-id
L: E - B I E—(E)
. E—E-+F E—-E+F
E— E+ E|E + E|(E)lid E— Ex+E E— E-+E
I: E—(-E) Lx E-E+E
. E—.E+E E—-E+FE
FO”OW(E)—{$7+7*7)} E - -ExE E—-SE xE
= states 7 and 8 have E — (E)

. . E—id I3: E—-ExE.
shift/reduce conflicts for EsE+E
+ and x. I: E—id E— E+E

I E-E+E Iy E— (E)
E— .E+E
E— -ExE
E - «(E)
E —-id

(Dragonbook)



Disambiguation
Example:

m Parsing of id + id * id will give the configuration
(0E1 + 4ET7, xid$)

We can choose:

» ACTIONI[7, ] =shift 5= precedence to
» ACTION[7,*] =reduce E — E + E = precedence to +

m Parsing of id 4 id + id will give the configuration
(0E1 + 4E7,+id$)

We can choose:

» ACTION[7,+] =shift 4= + is right-associative
» ACTION[7,+] =reduce E — E + E = + is left-associative

(same analysis for Ig)



Error detection and recovery

m In table-driven parsers, there is an error as soon as the table
contains no entry (or an error entry) for the current stack (state)
and input symbols

m The least one can do: report a syntax error and give information
about the position in the input file and the tokens that were
expected at that position

m In practice, it is however desirable to continue parsing to report
more errors
m There are several ways to recover from an error:

Panic mode

Phrase-level recovery

Introduce specific productions for errors
Global error repair

vV vy vVvYy



Panic-mode recovery

m In case of syntax error within a “phrase”, skip until the next
synchronizing token is found (e.g., semicolon, right parenthesis) and
then resume parsing

m In LR parsing:

» Scan down the stack until a state s with a goto on a particular
nonterminal A is found
» Discard zero or more input symbols until a symbol a is found that can

follow A
» Stack the state GOTO(s, A) and resume normal parsing



Phrase-level recovery

m Examine each error entry in the parsing table and decide on an
appropriate recovery procedure based on the most likely programmer
error.

m Examples in LR parsing: E — E + E|E « E|(E)|id

> id + *id:
* is unexpected after a +: report a “missing operand” error, push an
arbitrary number on the stack and go to the appropriate next state

> id +id) + id:
Report a “unbalanced right parenthesis” error and remove the right
parenthesis from the input



Other error recovery approaches

Introduce specific productions for detecting errors:
m Add rules in the grammar to detect common errors

m Examples for a C compiler:
| — if E | (parenthesis are missing around the expression)
| — if (E) then / (then is not needed in C)

Global error repair:

m Try to find globally the smallest set of insertions and deletions that
would turn the program into a syntactically correct string

m Very costly and not always effective



Building the syntax tree

m Parsing algorithms presented so far only check that the program is
syntactically correct

m In practice, the parser needs also to build the parse tree (also called
concrete syntax tree)

m Its construction is easily embedded into the parsing algorithm

m Top-down parsing:
» Recursive descent: let each parsing function return the sub-trees for
the parts of the input they parse
» Table-driven: each nonterminal on the stack points to its node in the
partially built syntax tree. When the nonterminal is replaced by one
of its RHS, nodes for the symbols on the RHS are added as children
to the nonterminal node



Building the syntax tree

m Bottom-up parsing:
» Each stack element points to a subtree of the syntax tree
» When performing a reduce, a new syntax tree is built with the
nonterminal at the root and the popped-off stack elements as children

m Note:
> In practice, the concrete syntax tree is not built but rather a
simplified (abstract) syntax tree
» Depending on the complexity of the compiler, the syntax tree might
even not be constructed

assignment
/ Statemem \
identifier expression :
I / \
%3 / | ™
eXprESSiOn + eXpreSSlOn

| 1
identifier number / \
|

1
y 3



Conclusion: top-down versus bottom-up parsing

m Top-down
» Easier to implement (recursively), enough for most standard
programming languages
> Need to modify the grammar sometimes strongly, less general than
bottom-up parsers
» Used in most hand-written compilers
m Bottom-up:
» More general, less strict rules on the grammar, SLR(1) powerful
enough for most standard programming languages
» More difficult to implement, less easy to maintain (add new rules,
etc.)
» Used in most parser generators like Yacc or Bison (but JavaCC is
top-down)



For your project

m The choice of a parsing technique is left open for the project but we
ask you to implement the parser by yourself (Yacc, bison or other
parser generators are forbidden)

m Weak precedence parsing was the recommended method in previous
implementations of this course

m Motivate your choice in your report and explain any transformation
you had to apply to your grammar to make it fit the parser's
constraints

m To avoid mistakes, you should build the parsing tables by program



Part 4

Semantic analysis



Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l



Outline

1. Syntax-directed translation

2. Abstract syntax tree

3. Type and scope checking



Syntax-directed definition

m A general way to associate actions (i.e., programs) to production
rules of a context-free grammar

m Used for carrying out most semantic analyses as well as code
translation

m A syntax-directed definition associates:
» With each grammar symbol, a set of attributes, and
» With each production, a set of semantic rules for computing the
values of the attributes associated with the symbols appearing in the
production
m A grammar with attributes and semantic rules is called an attributed
grammar

m A parse tree augmented with the attribute values at each node is
called an annotated parse tree.



Example

Grammar:
s
S — aSb|aS|cSacS|e 3/3&
Semantic rules: ¢ 150 a 150
Production Semantic rules /\ %
S — aSb S.nba := Sy.nba+1 a 0oSo a
S.nbc := S1.nbc | |
S — a5 S.nba:= Sy.nba+1 € €
S.nbc := S1.nbc
S — cS1acS> | S.nba := Sy.nba + Sy.nba + 1 acaacabb
S.nbc := Si.nbc + Sy.nbc + 2
S—e S.nba:=0
S.nbc :=0
S'"—S Final result is in S.nba and S.nbc

(subscripts allow to distinguish different instances of the same symbol in a rule)



Attributes

m Two kinds of attributes

» Synthesized: Attribute value for the LHS nonterminal is computed
from the attribute values of the symbols at the RHS of the rule.

> Inherited: Attribute value of a RHS nonterminal is computed from
the attribute values of the LHS nonterminal and some other RHS
nonterminals.

m Terminals can have synthesized attributes, computed by the lexer
(e.g., id.lexeme), but no inherited attributes.



Example: synthesized attributes to evaluate expressions

Left-recursive expression grammar

I5E
Production |Semantic rules |
L E L.val = E.val 15T
E — E; + T |E.val = Ey.val + T.val /|\
E-T E.val = T.val 3T % '|E5
T — T1xF | T.val = Ty.val x F.val /\I 5
T—F T.val = F.val 3|T * ,|: >
F — (E) F.val = E.val 4
F — num | F.val = num./exval



Example: inherited attributes to evaluate expressions

LL expression grammar

i i T.val =15

Production |Semantic rules / \

T — FT" | T'.inh = F.val s

F.val =3 T'.inh =3
T'.syn=15

T.val = T'.syn |

T' — «FT{ | T{.inh = T'.inh x F.val ol 3 // S~
T'.syn= T{.syn Fubl—5  Tlinh=15

T —e¢ T'.syn = T'.inh | T{.syn =15

F — num |F.val = num.lexval

num./exval =5

€



Evaluation order of SDD's

General case of synthesized and inherited attributes:
m Draw a dependency graph between attributes on the parse tree
m Find a topological order on the dependency graph (possible if and
only if there are no directed cycles)
m If a topological order exists, it gives a working evaluation order. If
not, it is impossible to evaluate the attributes
In practice, it is difficult to predict from a attributed grammar whether
no parse tree will have cycles

Example:
. T 9 yal

F 31)01/4%8 syn
|

digit 1 lezval «  F 4 val

inh6 T 7 syn
N

S
digit 2 lezval €

(Dragonbook)



Evaluation order of SDD's

Some important particular cases:

m A grammar with only synthesized attributes is called a S-attributed
grammar.

m Attributes can be evaluated by a bottom-up (postorder) traversal of
the parse tree

77N
98 ©
Va

O



Evaluation order of SDD's

Some important particular cases:
m A syntax-directed definition is L-attributed if each attribute is either

1. Synthesized
2. Inherited “from the left": if the production is A — X1 X5...X,, then
the inherited attributes for X; can depend only on
2.1 Inherited attributes of A
2.2 Any attribute among Xi,...,Xj—1 (symbols at the left of X
2.3 Attributes of X; (provided they are not causing cycles)

m To evaluate the attributes: do a depth first traversal evaluating
inherited attributes on the way down and synthesized attributes on
the way up (i.e., an Euler-tour traversal)



Translation of code

m Syntax-directed definitions can be used to translate code

m Example: translating expressions to post-fix notation

Production Semantic rules
L— E Lt=E.t
E—-E+T Et=E.t|T.t]|+
E—E —T E.t=E.t||T.t]|-
E—-T Et=T.t
T—TixF T.t=Ty.t||F.t||'¥
T—F T.t=F.t

F — (E) Ft=E.t

F— num F.t = num./exval



Syntax-directed translation scheme

m The previous solution requires to manipulate strings (concatenate,
create, store)

m An alternative is to use syntax-directed translation schemes.

m A syntax-directed translation scheme (SDT) is a context-free
grammar with program fragments (called semantic actions)
embedded within production bodies:

A= {R}X{R1} X2 ... X¢{Re}

m Actions are performed from left-to-right when the rules is used for a
reduction

m Interesting for example to generate code incrementally



Example for code translation

Production //E\

L— E E + T {pvi.nt('+’)}
E—E+T {print('+')} //\

E—T E + T {print(+)} 2 {print(2)}
T— TixF  {print(+')} | /™

T—>F T 5 {(ein(5)

F — (E) /™

F — num {print(num./exval)} 9 (print('9)}

(Post-fix SDT as all actions are performed at the end of the productions)



Side-effects

m Semantic rules and actions in SDD and SDT's can have side-effects.
E.g., for printing values or adding information into a table

m Needs to ensure that the evaluation order is compatible with
side-effects

m Example: variable declaration in C

Production | Semantic rules

D— TL |L.type= T.type (inherited)
T —int | T.type =int (synthesized)
T — float | T.type =float (synthesized)
L—Ly,id | L;.type = L.type (inherited)

AddType(id.entry, L.type) (synthesized, side effect)
L—id AddType(id.entry, L.type) (synthesized, side effect)

m id.entry is an entry in the symbol table. AddType add type
information about entry in the symbol table



Implementation of SDD's

Attributes can be computed after parsing:

m By explicitely traversing the parse or syntax tree in any order
permitting the evaluation of the attributes

m Depth-first for S-attributed grammars or Euler tour for L-attributed
grammar

m Advantage: does not depend on the order imposed by the syntax
analysis

m Drawback: requires to build (and store in memory) the syntax tree



Evaluation after parsing of L-attributed grammar

For L-attribute grammars, the following recursive function will do the
computation for inherited and synthesized attributes

ANALYSE(N, InheritedAttributes)
if LEAF(N)
return SynthesizedAttributes / / \\
Attributes = InheritedAttributes
for each child C of N, from left to right / \
ChildAttributes = ANALYSE(C, Attributes) /\
Attributes = Attributes U ChildAttributes

Execute semantic rules for the production at node N
return SynthesizedAttributes

m Inherited attributes are passed as arguments and synthesized
attributes are returned by recursive calls

m In practice, this is implemented as a big two-levels switch on
nonterminals and then rules with this nonterminal at its LHS



Variations

m Instead of a giant switch, one could have separate routines for each
nonterminal (as with recursive top-down parsing) and a switch on
productions having this nonterminal as LHS (see examples later)

m Global variables can be used instead of parameters to pass inherited
attributes by side-effects (with care)

m Can be easily adapted to use syntax-directed translation schemes
(by interleaving child analysis and semantic actions)



Implementation of SDD's

Attributes can be computed directly during parsing:
m Attributes of a S-attributed grammar are easily computed during
bottom-up parsing
m Attributes of a L-attributed grammar are easily computed during
top-down parsing
m Attribute values can be stored on a stack (the same as the one for
parsing or a different one)

m Advantage: one pass, does not require to store (or build) the syntax
tree

m Drawback: the order of evaluation is constrained by the parser



Bottom-up parsing and S-attributed grammar

m Synthesized attributes are easily handled during bottom-up parsing.
Handling inherited attributes is possible (for a LL-grammar) but
more difficult.

m Example with only synthesized attributes (stored on a stack):

Production [Semantic rules [Stack actions
E — E1+ T |E.val = Ey.val + T.val | tmpT = pop()
tmpE = pop()

PUSH(tmpE + tempT)
E—-T E.val = T.val
T — Ti*F | T.val = Ti.val X F.val | tmpT = pop()
tmpF = PoP()
PUSH(tmpT * tempF)

T—F T.val = F.val
F — (E) F.val = E.val
F — num |F.val = num.lexval PUSH(num./exval)

(Parsing tables on slide 188)



Bottom-up parsing and S-attributed grammar

Stack Input | Action Attribute stack
30 2% (10 +3)$ | s5

$F2 %(1043)$ | r6: F — num 2
CRIGE «(10+3)$ | ra: T —F 2
o7 2 #(10+3)$ | s7 2

o 2[«[7] (10+3)$ | s4 2
slolm2|«7|(4] 10+3)$ | s5 2
o2« T(TIO +3)$ | r6: F — num 210
slo|r{2]«[7|(4]F 3] 43)8 | 4 T—F 210
slo|r{2]«[7](4(m2 +3)$ | 2 E—T 210
slolr2]«7|(4E8 +3)$ | s6 210
slo|r{2]«[7|(4|E 8]+[6] 3)$ | s5 210
so|r{2]«[7|(4|E 8]+ 635 )$ | 6: F— num | 2103
slolr2]«7|(4E[8]+ F S | 4 T—F 2103
slo T2 ]«[7](4]e[8]+[6] ] )$ | rE—E+T | 213
$0(T|2|=|7]|]4]|E|8 )$ | si1 213
s 0|72« [7|(4]g 8)[11] $ | 15 F— (E) 213
${0|T|2]+|7]|F 10 $ |3 T—>T=xF | 26
$0]7(2] $ |2 EST 26
$7Eﬂ $ | Accept 26



Top-down parsing of L-attributed grammar

m Recursive parser: the analysis scheme of slide 236 can be
incorporated within the recursive functions of nonterminals

m Table-driven parser: this is also possible but less obvious.

m Example with only inherited attributes (stored on a stack):

Production [Semantic rules [Stack actions

S'—S S.nb=0 PUSH(0)

S5 —(51)S2|S1.nb = S.nb+ 1| PUsH(TOP() + 1)
So.nb = S.nb

S—e PRINT(S.nb) PRINT(POP())

(print the depth of nested parentheses)

Parsing table:

| ( ) $
s’ S —S S—S
S |15—-(5)S S—e¢ S—ce




Top-down parsing of L-attributed grammar

Stack Input | Attribute stack | Output
S'$ 1 (OMON0 | o
581 (0N |01
(5)5% | (OONO | 01
$)S$ | O(0NO | 012
(5)$)s$ | 00N | 012
$)$)Ss | )ON( | o1 2
)$)S$ | )OO | 01
5)5% ONO o012
(5)5)S$ ONO | o012
5)5)S$% 0N | 0123
(5)5)5)S$ ON() 0123
5)5)5)S$ N0 | 012 3
)5)S5)S$ N(O | 012
5)5)S$ N(O) |01 2
)5)S$ N0 |01
5)S$ )() | 0 1
)S$ ) | o
S$ Olo1
(5)s$ Olo1
S5)S$ )| O 1
)S$ )| O
S$ 0

$




Comments

m It is possible to transform a grammar with synthesized and inherited
attributes into a grammar with only synthesized attributes

m It is usually easier to define semantic rules/actions on the original
(ambiguous) grammar, rather than the transformed one

m There are techniques to transform a grammar with semantic actions
(see reference books for details)



Applications of SDD's

SDD can be used at several places during compilation:
m Building the syntax tree from the parse tree
m Various static semantic checking (type, scope, etc.)
m Code generation
m Building an intepreter



Abstract syntax tree

assignment

/ Statement \

identifier expression H
5 / | ™~ / \
expression + expression
idenltifier nurr:ber / \
! !

m The abstract syntax tree is often used as a basis for other semantic
analysis or as an intermediate representation

m When the grammar has been modified for parsing, the syntax tree is
a more natural representation than the parse tree

m The abstract syntax tree can be constructed using SDD (see next
slides)

m Another SDD can then be defined on the syntax tree to perform
semantic checking or generate another intermediate code (directed
by the syntax tree and not the parse tree)



Generating an abstract syntax tree

For the left-recursive expression grammar:
Production Semantic rules
E— E1+ T E.node = new Node('+', Ei.node, T.node)
E— E1— T E.node = new Node('—', E1.node, T.node)

E—T E.node = T.node

T — (E) T .node = E.node

T —id T .node = new Leaf (id, id.entry)

T — num T.node = new Leaf (num, num.entry)

(Dragonbook) to entry for a



Generating an abstract syntax tree

For the LL transformed expression grammar:
Production Semantic rules
E — TE' E.node = E’.syn; E'.inh = T .node
E' — +TE] E].inh=new Node('+’, E'.inh, T .node); E' .syn = E].syn
E' — —TE] E|.inh = new Node('—', E'.inh, T .node); E' .syn = E.syn
E' — ¢ E’.syn = E'.inh

E—-T E.node = T.node
T — (E) T .node = E.node
T —id T .node = new Leaf (id, id.entry)
T — num T.node = new Leaf (num, num.entry)
E 13 gode
T 2 Tfode inh 5 E123Y"
id 1 entry - T4 Tiode inh.ﬁ ET1150m

num 3 val + T 87ode 9 EB10Ym
Ny

}

(Dragonbook) id 7 entry €



Type and scope checking

m Static checkings:
» All checkings done at compilation time (versus dynamic checkings

done at run time)
» Allow to catch errors as soon as possible and ensure that the program

can be compiled

m Two important checkings:
» Scope checking: checks that all variables and functions used within a

given scope have been correctly declared
» Type checking: ensures that an operator or function is applied to the

correct number of arguments of the correct types

m These two checks are based on information stored in a symbol table



Scope
¢

int x = 1;
int y = 2;
{
double x = 3.1416;
y += (int)x;

Yo+ X

}

m Most languages offer some sort of control for scopes, constraining
the visibility of an identifier to some subsection of the program

m A scope is typically a section of program text enclosed by basic
program delimiters, e.g., {} in C, begin-end in Pascal.

m Many languages allow nested scopes, i.e., scopes within scopes. The
current scope (at some program position) is the innermost scope.

m Global variables and functions are available everywhere

m Determining if an identifier encountered in a program is accessible at
that point is called Scope checking.



Symbol table

{ int x; int y;

{ int w; bool y; int z; x | int
S B TN S S T y | int
}
R ST N w_ | int
¥ y | bool
z int

m The compiler keeps track of names and their binding using a symbol
table (also called an environment)

m A symbol table must implement the following operations:

» Create an empty table

Add a binding between a name and some information

Look up a name and retrieve its information

Enter a new scope

Exit a scope (and reestablish the symbol table in its state before
entering the scope)

>
>
>
>



Symbol table

m To manage scopes, one can use a persistent or an imperative data
structure

m A persistent data structure is a data structure which always
preserves the previous version of itself when it is modified

m Example: lists in functional languages such as Scheme
» Binding: insert the binding at the front of the list, lookup: search the
list from head to tail
» Entering a scope: save the current list, exiting: recalling the old list
m A non persistent implementation: with a stack
» Binding: push the binding on top of the stack, lookup: search the
stack from top to bottom
» Entering a scope: push a marker on the top of the stack, exiting: pop
all bindings from the stack until a marker is found, which is also
popped
» This approach destroys the symbol table when exiting the scope
(problematic in some cases)



More efficient data structures

m Search in list or stack is O(n) for n symbols in the table

m One can used more efficient data structures like hash-tables or
binary search trees
m Scopes can then be handled in several ways:

» Create a new symbol table for each scope and use a stack or a linked
list to link them
» Use one big symbol table for all scopes:
> Each scope receives a number
> All variables defined within a scope are stored with their scope number
» Exiting a scope: removing all variables with the current scope number

» There exist persistent hash-tables



Types

m Type checking is verifying that each operation executed in a
program respects the type system of the language, i.e., that all
operands in any expression are of appropriate types and number

m Static typing if checking is done at compilation-time (e.g., C, Java,
C++)

m Dynamic typing if checking is done at run-time (e.g., Scheme,
Javascript).

m Implicit type conversion, or coercion, is when a compiler finds a type
error and change the type of the variable into the appropriate one
(e.g., integer—float)



Principle of type checking

m Identify the types of the language and the language constructs that
have types associated with them

m Associate a type attribute to these constructs and semantic rules to
compute them and to check that the typing system is respected

m Needs to store identifier types in the symbol table
m One can use two separate tables, one for the variable names and one
for the function names

m Function types is determined by the types (and number) of
arguments and return type. E.g., (int,int) — int

m Type checking can not be dissociated from scope and other
semantic checking



[[lustration

We will use the following source grammar to illustrate type checking

P F Exp —  num
rogram — Funs .
Exp — id
P P Exp — Exp+Exp
Funs - Fun F Exp — Exp=FExp
uns - funtuns Exp — if Exp then Exp else Exp
Exp — id ( Exps
Fun = Typeld (Typelds) = Exp Exp — 1e‘£ id= E)xp in Exp
Typeld — int id Exps ~ Exp

Typeld — bool id Exps . Exp, Exps

Typelds — Typeld
Typelds — Typeld , Typelds

(see chapter 5 and 6 of (Mogensen, 2010) for full details)



Implementation on the syntax tree: expressions

Type checking of expressions:

— inherited attributes

Checkg,,(Exp,vtable, ftable) = case Exp of

num int feeneenemseseeceneenenes - filled in by lexer

id t = lookup(vtable, getname(id))
f 1= UnbOURA =eescacmcercenan -» scope checking
then error(); int --....__
elset T .

Expy +Exp, | 1 7CheckEx,,(Exp1,vtable ftable) 7 error recovery
L= Checkgyy(Expy,vtable )_‘table) . -
Tf t =int and ty = int ------ SOGIEEREREERED -> type checkin
then int ___.—"" yp g
else error(); int .-~

synthesized attribute

Follows the implementation of slide 237 with one function per
nonterminal, with a switch on production rules



Implementation on the syntax tree: function calls

ChECkExp(Exp7Vtable7ftable) =caseExpof . ... ... Ly ﬁ”ed in by Iexer
id (Exps) t = lookup(ftable, getnume(id))
if £ = UNDOUNA +=====-==reemeraneeanmaneanee ] - scope checking
then error(); int
else

((ty,-ostn) = 10) =1
(115 1] = Checke.ps (Exps,viable, frable) | checking function
if m=nand 1y =1t|,...,I =1t)-=======x=-u-- -

then t arguments

else error(); ty

Checkg.ps(Exps,vtable, ftable) = case Exps of
Exp [Checkgy,(Exp,vtable, ftable)]
Exp , Exps | Checkgyy(Exp,vtable, ftable)

it Checkgyps(Exps,vtable, ftable)

=cons




Implementation on the syntax tree: variable declaration

Checkgy,(Exp,vtable, ftable) = case Exp of

let id = Exp
in Exp;

t) = Checkg.p(Expi,vtable, ftable)
vtable' = bind(vtable, getname(id), t;)
Checkg,,(Expy,vtable', ftable)

create a new
scope

m Create a new symbol table vtable’ with the new binding

m Pass it as an argument for the evaluation of Exp, (right child)



Implementation on the syntax tree: function declaration

synthesized attribute

Checkpyy(Fun, ftable) = case Fun of

Typeld ( Typelds ) = Exp

ifto#n

then error()

(fJO) = Getfvpeld(Typeld)
vtable = Checkryperas(Typelds) —
ty = Checkg,,(Exp,vtable, ftable)

Getrypera(Typeld) = case Typeld of

intid | (getname(id), int)

bool id | (gername(id), bool)

Checkryperas(Typelds) = case Typelds of

Typeld

(x,1) = Getrypera(Typeld)
bind(emptytable,x,t)

Typeld , Typelds

(x,1) = Getrypera(Typeld)
vtable = Checkryperas(Typelds)
if lookup(vtable,x) = unbound
then bind(vtable,x,t)

else error(); vtable

inherited attributes

Fun

AN

Typeld ( Typelds ) = Exp

Create a symbol table
with arguments



Implementation on the syntax tree: program

Checkpy, Program) = case Program of . L. .
progran 108 ) g Collect all function definitions in a

Funs | ftable = Getpys(Funs) «-=---«ee-eeeea- > )

Checkpuns (Funs, ftable) symbol table (to allow mutual recursion)

if lookup(ftable, main) # (int) — int |

then error()

----> Language semantic requires a main function

Checkpuns(Funs, ftable) = case Funs of
Fun Checkpy(Fun, ftable)

Fun Funs | Checkpyy(Fun, ftable)
Checkpyns(Funs, ftable)

m Needs two passes over the function definitions to allow mutual
recursion

m See (Mogensen, 2010) for Getg,ps (similar as Checkgyns)



More on types

m Compound types are represented by trees (constructed by a SDD)

m Example: array declarations in C

int [3][4]
Production Semantic rules
T = BC Tt=Ct Cb=Bt ary
B — int B.t =int
B — float B.t =float 3 array
C - [NUM ]G | C.t = array(NUM.val, Ci.t)
C—ce¢ Ct=C.b \

4 int

m Compound types are compared by comparing their trees



More on types

m Type coercion:

» The compiler supply implicit conversions of types
» Define a hierarchy of types and convert each operand to their least

upper bound (LUB) in the hierarchy

m Overloading:

» An operator accepting different types (e.g., = in our source language)

» Type must be defined at translation

Expi =Exp;

ty = Checkgy(Expy,vtable, ftable)
ty = Checkg,,(Expy,vtable, ftable)
if h=n

then bool

else error(); bool

m Polymorphism: functions defined over a large class of similar types

m Implicit types: some languages (like ML or Haskell) do not require
to explicit declare type of functions or variables. Types are

automatically inferred at compile time.




Part 5

Intermediate code generation



Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l



Outline

1. Intermediate representations

2. lllustration

3. Optimization



Intermediate code generation

The final phase of the compiler front-end

m Goal: translate the program into a format expected by the compiler
back-end

In typical compilers: followed by intermediate code optimization and
machine code generation

Techniques for intermediate code generation can be used for final
code generation (cf. your project)



Intermediate representations

Why use an intermediate representation?

m It's easy to change the source or the target language by adapting
only the front-end or back-end (portability)

m |t makes optimization easier: one needs to write optimization
methods only for the intermediate representation

m The intermediate representation can be directly interpreted

Java Sparc

ML& / MIPS
IR/

Pascal — \
/ Pentium
C
Cot Itanium

(Appel)



Intermediate representations

Intermediate
representation

Source ? Target
language | } 1 language
(high-level) D (low-level)

m How to choose the intermediate representation?
> It should be easy to translate the source language to the intermediate

representation
> It should be easy to translate the intermediate representation to the

machine code
» The intermediate representation should be suitable for optimization

m It should be neither too high level nor too low level

m One can have more than one intermediate representation in a single
compiler



Some common intermediate representations

m Graphical representations: parse tree, abstract syntax trees, DAG. ..
m Java bytecode (executed on the Java Virtual Machine)

m LLVM (Low Level Virtual Machine), a general compiler infrastructure
m Three Address Code (TAC, of the form “result=opl operator op2")

m Cis used in several compilers as an intermediate representation (Lisp,
Haskell, Cython...)

m Continuation-passing style (CPS): general form of IR for functional
languages

m Microsoft's Common Intermediate Language (CIL)

m GNU Compiler Collection (GCC) uses several intermediate representations:

Abstract syntax trees

GENERIC (tree-based)

GIMPLE (SSA-based, static single assignment form)
Register Transfer Language (RTL, inspired by lisp lists)

vV vy vVvYy

(Google them)



Outline

2. lllustration



The intermediate language

We will illustrate the translation of typical high-level language
constructions using the following low-level intermediate language:

Program

Instructions
Instructions

Instruction
Instruction
Instruction
Instruction
Instruction

1

Ll

[ Instructions |

Instruction
Instruction , Instructions

id := Arom

id := unop Atom

id := id binop Atom
id := M[Atom]
M|Atom] :=id

Instruction
Instruction

Instruction
Instruction

Atom
Atom
Args
Args

Lol

!

U

LABEL labelid

GOTO labelid

IF id relop Atom THEN labelid ELSE labelid
id := CALL functionid(Args)

id

num

id

id , Args

Simplified three-address code, very close to machine code

See chapter 5 and 7 of (Mogensen, 2010) for full details



The intermediate language

Program

Instructions
Instructions

Instruction
Instruction
Instruction
Instruction
Instruction

Atom
Atom

!

Lelblod

Ll

[ Instructions |

Instruction
Instruction , Instructions

id := Arom
id := unop Atom
id := id binop Arom

id := M[Arom)]
M[Atom] :=id
id

num

All values are assumed to be
integer

Unary and binary operators
include normal arithmetic and
logical operations

An atomic expression is either a
variable or a constant

M[Atom] :=id is a tranfer from
a variable to memory

id := M[Atom] is a tranfer from
memory to a variable



The intermediate language

Instruction — LABEL labelid

Instruction — GOTO labelid

Instruction — IF id relop Atom THEN labelid ELSE labelid
Instruction — id := CALL functionid(Args)

Atom — id

Atom —  num

Args — id

Args — id, Args

m LABEL only marks a position in the program
m relop includes relational operators {=,#,<,>,< or >}
m Arguments of a function call are variables and the result is assigned

to a variable



Principle of translation

m Syntax-directed translation using several attributes:

» Code returned as a synthesized attribute

» Symbol tables passed as inherited attributes

» Places to store intermediate values as synthesized or inherited
attributes

m Implemented as recursive functions defined on syntax tree nodes (as
for type checking)

m Since translation follows the syntax, it is done mostly independently
of the context, which leads to suboptimal code

m Code is supposed to be optimized globally afterwards



Expressions

Exp
Exp
Exp
Exp
Exp

Exps
Exps

Principle of translation:

Ll

1

num

id

unop Exp

Exp binop Exp
id(Exps)

Exp
Exp , Exps

m Every operations is stored in a new variable in the intermediate
language, generated by a function newvar

m The new variables for sub-expressions are created by parent
expression and passed to sub-expression as inherited attributes
(synthesized attributes are also possible)



Expressions

Transgx,(Exp,vtable, ftable, place) = case Exp of
num v = getvalue(num)

[place :=v)

id x = lookup(vtable,getname(id)) where to place the
[place := x] i > translation of Expi
unop Exp; place; = newvar() : (inherited attribute)
codey = TransEXp(Expl,vtable,ftable,pla'cel)
op = transop(getopname(unop))
codey++[place := op place)

T INEEE » String concatenation

m getopname retrieves the operator associated to the token unop.
transop translates this operator into the equivalent operator in the
intermediate language

m [place := v] is a string where place and v have been replaced by
their values (in the compiler)

» Exemple: if place = t14 and v = 42, [place := v] is the instruction
[t14:=42].



Expressions: binary operators and function call

Transgy,(Exp,vtable, ftable, place) = case Exp of

Expi binop Exp;

place; = newvar()

place; = newvar()

code; = Transgy,(Expy,vtable, ftable, place)
codey = Transgy,(Expa,vtable, ftable, place)
op = transop(getopname(binop))
codey+codey++|place := place; op place,)

id(Exps)

(codey,[ay,. .. ay))

= Transgyps(Exps,vtable, ftable)
fname = lookup( ftable,getname(id))
code +|place :== CALL fname(ay,...,ay)]




Expressions: function arguments

Transgyps(Exps,vtable, ftable) = case Exps of

Exp place = newvar()
code; = Transgy,(Exp,vtable, ftable, place)
(codey,|place])

Exp , Exps | place = newvar()

code; = Transgy,(Exp,vtable, ftable, place)
(codey,args) = Transgy,s(Exps,vtable, ftable)
codes = codej++code;

args| = place :: args

(codes,argsy)




Expressions: example of translation

Translation of 3+f(x-y,z):

tl1:=3
t4 :=v0
th :=vl
t3:=t4-1t5
t6 1= v2
t2 := CALL _f(t3,t6)
t0 ;= t1+t2

Assuming that:
® X, Yy, and z are bound to variables v0, v1, and v2

m Expression is stored in t0
m New variables are generated as t1, t2, t3...

m Indentation indicates depth of call to Transg,,



Statements

Stat
Stat
Stat
Stat
Stat
Stat

Cond

Principle of translation:

e Ll

!

Stat ; Stat

id:= Exp

if Cond then Stat

if Cond then Stat else Stat
while Cond do Stat

repeat Stat until Cond

Exp relop Exp

m New unused labels are generated by the function newlabel (similar

to newvar)

m These labels are created by parents and passed as inherited

attributes



Statements: sequence of statements and assignment

Transg, (Stat,vtable, frable) = case Stat of

Staty ; Staty codey = Transg;, (Staty,vtable, ftable)
codey = Transg, (Staty, vtable, ftable)
codej++codes

id:=Exp place = lookup(vtable, getname(id))
Transgyx,(Exp,vtable, ftable, place)




Statements: conditions

Transs;q (Stat,vtable, ftable) = case Stat of

if Cond
then Stat;
else Star,

label, = newlabel ()
label, = newlabel ()
labels = newlabel()
codey = Transconqa(Cond, labely,label,,viable, ftable)
codey = Transs, (Staty,vtable, ftable)
codes = Transg;y (Staty, vtable, ftable)
code+[LABEL label;]+code;
++[GOTO labels, LABEL label,]
+rcode3++[LABEL labels)

Transconq(Cond, label,,labely,vtable, ftable) = case Cond of

Expj relop Expy | t; = newvar()

tr = newvar()

code| = TransExp(Expl,vtable,ftable,tl)

codey = TransExp(Expz,vtable,ftable,tz)

op = transop(getopname(relop))
codey+rcoder+[IF ty opty THEN label, ELSE labely)




Statements: while loop

Transs,, (Stat,vtable, ftable) = case Stat of

while Cond | label; = newlabel()
do Stat; labely = newlabel ()
labels = newlabel ()
codey = Transcyuq(Cond, labely,labels, vtable, ftable)
codey = Transg;, (Staty,vtable, ftable)
[LABEL label,|++code;
+[LABEL labely|++code,
++[GOTO label;, LABEL labels)




Logical operators

m Logical conjunction, disjunction, and negation are often available to
define conditions

m Two ways to implement them:
> Usual arithmetic operators: arguments are evaluated and then the
operators is applied. Example in C: bitwise operators: '&’ and '|'.
» Sequential logical operators: the second operand is not evaluated if
the first determines the result (lazy or short-circuit evaluation).
Example in C: logical operators '&&" and '||'.
m First type is simple to implement:
» by allowing any expression as condition

Cond — Exp

» by including '&', '|', and 'I" among binary and unary operators

m Second one requires more modifications



Sequential logical operators

Cond
Cond
Cond
Cond
Cond
Cond

Exp relop Exp
true

false

! Cond

Cond && Cond
Cond || Cond

A

Transcona(Cond, label,,labels,vtable, ftable) = case Cond of

true [GOTO label,]
false [GOTO labely]
! Cond, Transcond(Cond ,labelys,label; ,vtable, ftable)

Cond; && Cond,

arg, = newlabel ()
code\=Transcona(Cond,,arg,,labels,vtable, ftable)
codey=Transconq(Condy,label;,labels,vtable, ftable)
code|+[LABEL args|+rcode;

Cond, || Cond,

arg, = newlabel ()
codei=Transcong(Cond,,label,,arg,,vtable, ftable)
codes=Transcond(Cond,,label,,labely,vtable, ftable)
code|+[LABEL args|+rcode;




Other statements

More advanced control statements:

m Goto and labels: labels are stored in the symbol table (and
associated with intermediate language labels). Generated as soon as
a jump or a declaration is met (to avoid one additional pass)

m Break/exit: pass an additional (inherited) attribute to the
translation function of loops with the label an break/exit should
jump to. A new label is passed when entering a new loop.

m Case/switch-statements: translated with nested if-then-else
statements.



Arrays

Language can be extended with one-dimensional arrays:

Exp — Index
Stat  — Index:= Exp
Index — id[Exp]

Principle of translation:
m Arrays can be allocated statically (at compile-time) or dynamically
(at run-time)
m Base address of the array is stored as a constant in the case of static
allocation, or in a variable in the case of dynamic allocation
m The symbol table binds the array name with to the constant or
variable containing its address



Arrays: translation

Transgy,(Exp,vtable, ftable, place) = case Exp of
Index | (codey,address) = Transigex(Index, vtable, ftable)
codei+|[place := M[address]|

Transg;y (Stat,vtable, ftable) = case Stat of

Index := Exp | (codey,address)=Transmq.c(Index,vtable, ftable)
t = newvar()

code; = Transgy,(Exp,vtable, ftable,t)
code+codey++|Mladdress| := t]

Transmaex(Index,vtable, ftable) = case Index of
id[Exp] | base = lookup(vtable, getname(id))

t = newvar()

code| = Transgy,(Exp,vtable, ftable,t)
codey = code +t :=t x4t :=t+ base]
(codey,t)

(Assuming arrays are indexed starting at 0 and integers are 64 bits long)



Multi-dimensional arrays

Index — id[Exp]
Index — Index|Exp]

Principle of translation:

m Two ways to represent a 2-dimensional array in linear memory:

» Row-major order: one row at a time. For a 3 x 2 array: a[0][0],
a[0][1], a[1][0], a[1][1], a[2][0], a[2][1]

» Column-major order: one column at a time. For a 3 x 2 array:
a[0][0], a[1][0], a[2][0], a[o][1], a[1][1], a[2][1]

m Generalization: if dimg, dimy, ..., dim,_1 are the sizes of the
dimensions in a n-dimensional arrays, the element [ip][/1] . - . [in—1]
has the address:

» Row-major:

base + ((...(fo - dimy + i) - dima ... + ip_2) - dim,_1 + in_1) - Size
» Column-major:

base + ((...(io - dimy + i) - dimy ... + ip_2) - dimp_1 + ip—1) - Size

m Dimension sizes are stored as constant (static), in variables or in
memory next to the array data (dynamic)



Multi-dimensional arrays: translation

Transmgex(Index, vtable, ftable) =
(codey,t,base,[]) = Calcipger(Index, vtable, ftable)
codey = code+|t ==t x4,1 := 1+ base]
(codey,t)

Calcrygex(Index,vtable, ftable) = case Index of

id[Exp] (base,dims) = lookup(vtable,getname(id))

t = newvar()

code = Transgy,(Exp,vtable, ftable,t)
(code,t,base,tail(dims))

Index|Exp] | (codey,ty,base,dims) = Calcppger(Index, viable, ftable)
dim) = head(dims)

ty = newvar|()

codey = Transgy,(Exp,vtable, ftable,t,)

codes = codey+codey++t) :=t) xdimy, 1) := 1) +1]
(codes,ty,base,tail (dims))

(Assume dimension sizes are stored in the symbol table, as constant or
variable)



Other structures

m Floating point values: can be treated the same way as integers
(assuming the intermediate language has specific variables and
operators for floating point numbers)

m Records/structures: allocated in a similar way as arrays

» Each field is accessed by adding an offset to the base-address of the
record

» Base-addresses and offsets for each field are stored in the symbol
table for all record-variables

m Strings: similar to arrays of bytes but with a length that can vary at
run-time



Variable declaration

Stat  — Decl ; Stat
Decl — intid
Decl —  int id[num]

Principle of translation:

m Information about where to found scalar variables (e.g. integer) and
arrays after declaration is stored in the symbol table

m Allocations can be done in many ways and places (static, dynamic,
local, global. . .)



Variable declaration

Transs (Stat,vtable, ftable) = case Stat of

Decl ; Staty | (codey,vtabley) = Transp,c;(Decl,vtable)
codey = Transg, (Staty,vtabley, ftable)
codej+rcode;

Transpec(Decl,vtable) = case Decl of

int id t1 = newvar()
vtable, = bind(vtable, getname(id), ;)
([}, vtabley)

int id[num] | #; = newvar()
vtable| = bind(vtable, getname(id), ;)
([t := HP, HP := HP + (4 * getvalue(num))), vtable; )

(Assumes scalar variables are stored in intermediate language variables
and arrays are dynamically allocated on the heap, with their
base-addresses stored in a variable. HP points to the first free position of
the heap.)



Comments

m Needs to add error checking in previous illustration (array index out
of bound in arrays, wrong number of dimensions, memory/heap
overflow, etc.)

m In practice, results of translation are not returned as strings but
either:

» output directly into an array or a file
» or stored into a structure (translation tree or linked list)
The latter allows subsequent code restructuring during optimization

m We have not talked about:

» memory organization: typically subdivided into static data (for static
allocation), heap (for dynamic allocation) and stack (for function
calls)

» translation of function calls: function arguments, local variables, and
return address are stored on the stack (similar to what you have seen
in INFO-0012, computation structures)



Outline

3. Optimization



IR code optimization

IR code generation is usually followed by code optimization
Why?

> IR generation introduces redundancy

» To compensate for laziness of programmers

Improvement rather than optimization since optimization is
undecidable
Challenges in optimization:

» Correctness: should not change the semantic of the program
» Efficiency: should produce IR code as efficient as possible
» Computing times: should not take too much time to optimize

m What to optimize?
» Computing times
» Memory usage
» Power consumption
>



Control-flow graph

m A basic block is a series of IR
instructions where:

» there is one entry point into
the basic block, and
» there is one exit point out of
the basic block.
m Control-flow graph: nodes are
basic blocks and edges are
jumps between blocks

=3
t1:=4%i
t2:=a[tl]
ji=2

|

labl: j:=j+1
if j>100 then lab4

!

lab2: if t2<b then lab3

!

t2:=t2+3
GOTO lab2

lab3: b:=b-j
GOTO labl

lab4: a[t1]:=t2




Local optimizations

Local optimization: optimization within a single basic block

Examples:
m Constant folding: evaluation at compile-time of expressions whose
operands are contant
» 10+2*3 — 16
» [If 1 then Labl Else Lab2] — [GOTO Lab1]

m Constant propagation: if a variable is assigned to a constant, then
propagate the constant into each use of the variable

> [xi=4;t:=y*x;] can be transformed into [t:=y*4;] if x is not used later



Local optimizations

Examples:

m Copy propagation:: similar to constant propagation but generalized
to non constant values

tmp2 = tmpl;

tmp3 = tmp2 * tmpl, tmp3 = tmpl * tmpl;
tmp4 = tmp3; tmp5 = tmp3 * tmpl;
tmps = tmp3 * tmp2; ¢ = tmp5 + tmp3;

c = tmpb + tmp4;

m Dead code elimination: remove instructions whose result is never
used

» Example: Remove [tmpl=tmp2+tmp3;] if tmpl is never used



Local optimizations

Examples:

m Common subexpression elimination: if two operations produce the
same results, compute the result once and reference it the second
time

» Example: in a[i]l=a[i]+2, the address of a[i] is computed twice.
When translating, do it once and store the result in a temporary
variable

m Code moving/hoisting: move outside of a loop all computations
independent of the variables that are changing inside the loop
» Example: part of the computation of the address for a[i] [j] can be
removed from this loop
while (j<k) {
sum = sum + alil[j];
jt+;

}



IR code optimization

m Local optimizations can be interleaved in different ways and applied
several times each

m Optimal optimization order is very difficult to determine

m Global optimization: optimization across basic blocks
» Implies performing data-flow analysis, i.e., determine how values

propagate through the control-flow graph
» More complicated than local optimization



For your project

m No need to use an intermediate language (except for the syntax tree
if needed)

Syntax-directed translation as illustrated here should be enough

Implementation:

» During parsing: faster and requires less memory

» On the syntax tree: more flexible but less efficient

» Hybrid approaches are possible, i.e., developing explicitely syntax
trees only for some language constructions

If your target language is high-level, then:

» You can pre-defined structures/functions that mimic
structures/functions in the source language to ease translation. For
example, implement scheme lists with linked lists in C.

» You can use memory allocation facilities of the target language
(instead of doing all work manually)

No need to optimize code explicitely but avoid obvious sources of
inefficiency



Part 6

Code generation



Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l



Final code generation

m At this point, we have optimized intermediate code, from which we
would like to generate the final code

m By final code, we typically mean assembly language of the target
machine
m Goal of this stage:

» Choose the appropriate machine instructions to translate each
intermediate representation instruction

» Handle finite machine resources (registers, memory, etc.)

» Implement low-level details of the run-time environment

» Implement machine-specific code optimization

m This step is very machine-specific

m In this course, we will only mention some typical and general
problems



Short tour on machine code

m RISC (Reduced Instruction Set Computer)
» E.g.: PowerPC, Sparc, MIPS (embedded systems), ARM...
» Many registers, 3-address instructions, relatively simple instruction
sets
m CISC (Complex Instruction Set Computer)
» E.g.: x86, x86-64, amd64...
» Few registers, 2-address instructions, complex instruction sets
m Stack-based computer:

» E.g.: Not really used anymore but Java's virtual machine is
stack-based
» No register, zero address instructions (operands on the stack)

m Accumulator-based computer:

» E.g.: First IBM computers were accumulator-based
» One special register (the accumulator), one address instructions,
other registers used in loops and address specification



Outline

1. Introduction
2. Instruction selection
3. Register allocation

4. Memory management



Instruction selection

m One needs to map one or several instructions of the intermediate
representation into one or several instructions of the machine
language

m Complexity of the task depends on:

> the level of the IR
> the nature of the instruction-set architecture
> the desired quality of the generated code

m Examples of problems:

» Conditional jumps
» Constants
» Complex instructions



Example: Conditional jumps

m Conditional jumps in our intermediate language are of the form:
IF id relop Atom THEN labelid ELSE labelid

m Conditional jumps might be different on some machines:
» One-way branch instead of two-way branches

branch_if ¢ |/,
IF ¢ THEN [ ELSE Jf .
jump I¢

» Condition such as “id relop Atom” might not be allowed. Then,
compute the condition and store it in a register

» There might exist special registers for conditions

- .



Example: Constants

m IR allows arbitrary constants as operands to binary or unary
operators
m This is not always the case in machine code
» MIPS allows only 16-bit constants in operands (even though integers
are 32 bits)
» On the ARM, a constant can only be a 8-bit number positioned at
any even bit boundary (within a 32-bit word)
m If a constant is too big, translation requires to build the constant
into some register

m If the constant is used within a loop, its computation should be
moved outside



Exploiting complex instructions

m If we do not care about efficiency, instruction selection is
straightforward:

» Writes a code skeleton for every IR instructions
» Example in MIPS assembly:

th =1t +116 = addir2,r1,116
(where r2 and r1 are the registers chosen for t, and t;)

m Most processors (even RISC-based) have complex instructions that
can translate several IR instructions at once

» Examples in MIPS assembly:
=1t +116 = Iwr3, 116(rl)
t3 = M[t2]
(where r3 and rl are the registers chosen for t3 and t; resp. and
assuming that t, will not be used later)

m For efficiency reason, one should exploit them



Code generation principle

Determine for each variable whether it is dead after a particular use
(liveness analysis, see later)
th =1t +116
ts 1= M[t5*]
m Associate an address (register, memory location...) to each variable
(register allocation, see later)
m Define an instruction set description, i.e., a list of pairs of:
» pattern: a sequence of IR instructions

t:=r.+k
re i= Mt/
> replacement: a sequence of machine-code instruction translating the
pattern
Iw re, k(rs)

Use pattern matching to do the translation



[[lustration

t:=rs+k, 1w 1y, k(rs)
1= Mt

rr = Mry] 1w ry, 0(ry)
ry = MIk] 1w r, k(RO)
t:=rs+k, sW 1y, k(ry)
M[t/ast} =r

Miry| :==r sw rs, 0(ry)
M[k] :=r, sw 1, k(RO)
rg:=rs+r | add Td, Vs, I't

Tg =T add r4, RO, 1y
rg:=rs+k |addi rg, 15k

rqg =k addi rg, RO,k

Pattern/replacement pairs for a subset of the MIPS instruction set

MIPS instructions:
m lwrk(s): r=M[s+ k|
mswrk(s): Ms+k]l=r
maddrst: r=s+t
]

addirs,k: r=s+ k
where k is a constant

m RO: a register containing
the constant 0

(Mogensen)



[[lustration

IF ry = r; THEN label; ELSE labely, beq 1y, 11, label;
LABEL [abely labely:
IF ry = r; THEN label; ELSE labely, bne rs, 11, label ¢
LABEL label, label,:
IF ry = r; THEN label; ELSE labely beq rs, 11, label,
j labely
IF ry < r; THEN label, ELSE labely, slt Tds Fsy 1y
LABEL labely bne rq, RO, label,
label:
IF ry < r; THEN [abel, ELSE labely, slt Fds Tsy 1t
LABEL label, beq 74, RO, labely
label,:
IF ry < r; THEN label; ELSE labely slt Tds Py 1y
bne ra, RO, label;
j labely
LABEL label label:

MIPS instructions:

m beq r,s,lab: branch to | if
r=s

m bng r,s,lab: branch to | if
r#£s

msltrst: d=(s<t)

m j |: unconditional jump

(Mogensen)



Pattern matching

m A pattern should be defined for every single IR instruction
(otherwise it would not be possible to translate some IR code)

A last in a pattern can only be matched by a /ast in the IR code

But any variable in a pattern can match a /ast in the IR code

If patterns overlap, there are potentially several translations for the
same IR code

On wants to find the best possible translation (e.g., the shortest or
the fastest)
Two approaches:

» Greedy: order the pairs so that longer patterns are listed before
shorter ones and at each step, use the first pattern that matches a
prefix of the IR code

» Optimal: associate a cost to each replacement and find the
translation that minimizes the total translation cost, e.g. using
dynamic programming



[[lustration

Using the greedy approach:

IR code MIPS code
a:=a-+ bPst add a, a, b
d:=c+38 sw a, 8(c
M[d"t] .= a ©

IF a = ¢ THEN /abely ELSE /label,
LABEL /label,

label; :

beq a, c, label



Outline

3. Register allocation



Register allocation

m In the IR, we assumed an unlimited number of registers (to ease IR
code generation)

m This is obviously not the case on a physical machine (typically, from
5 to 10 general-purpose registers)

m Registers can be accessed quickly and operations can be performed
on them directly

m Using registers intelligently is therefore a critical step in any
compiler (can make a difference in orders of magnitude)

m Register allocation is the process of assigning variables to registers
and managing data transfer in and out of the registers



Challenges in register allocation

m Registers are scarce

» Often substantially more IR variables than registers
> Need to find a way to reuse registers whenever possible

m Register management is sometimes complicated

» Each register is made of several small registers (x86)

» There are specific registers which need to be used for some
instructions (x86)

» Some registers are reserved for the assembler or operating systems
(MIPS)

» Some registers must be reserved to handle function calls (all)

m Here, we assume only some number of indivisible, general-purpose
registers (MIPS-style)



A direct solution

m ldea: store every value in main memory, loading values only when

they are needed.

m To generate a code that performs some computation:
> Generate load instructions to retrieve the values from main memory

into registers

» Generate code to perform the computation on the registers
» Generate store instructions to store the result back into main memory

[ | Example: (with a,b,c,d stored resp. at fp-8, fp-12, fp-16, fp-20)
ar=b+c lw to, —12(fp)
d:=a = lw t;, —16(fp)
c:=a+d add t, ty, ty
sw tp, —8(fp)
Iw to, —8(fp)
sw tg, —20(fp)
Iw to, —8(fp)
lw t1, —20(fp)
add t,, tg, t1

sw iy, —16(f)



A direct solution

m Advantage: very simple, translation is straighforward, never runout
of registers

m Disadvantage: very inefficient, waste space and time

m Better allocator should:

> try to reduces memory load/store
» reduce total memory usage

m Need to answer two questions:

» Which register do we put variables in?
» What do we do when we run out of registers?



Liveness analysis

m A variable is live at some point in the program if its value may be
read later before it is written. It is dead if there is no way its value
can be used in the future.

m Two variables can share a register if there is no point in the program
where they are both live

m Liveness analysis is the process of determining the live or dead
statuses of all variables throughout the (IR) program

m Informally: For an instruction / and a variable t

> If tis used in /, then t is live at the start of /

» If tis assigned a value in | (and does not appear in the RHS of /),
then t is dead at the start of the /

» If t is live at the end of / and | does not assign a value to t, then t is
live at the start of /

> tis live at the end of / if it is live at the start of any of the
immediately succeding instructions



Liveness analysis: control-flow graph

First step: construct the control-flow graph
m For each instruction numbered 7, one defines succ|i] as follows:

» If instruction j is just after / and j is neither a GOTO or
IF-THEN-ELSE instruction, then j is in succ[i]

» If i is of the form GOTO /, the instruction with label / is in succli].

» If i is IF p THEN /; ELSE /¢, instructions with label /; and /¢ are both
in succli]

m The third rule loosely assumes that both outcomes of the
IF-THEN-ELSE are possible, meaning that some variables will be
claimed live while they are dead (not really a probblem)



Liveness analysis: control-flow graph

Example (Computation of Fibonacci(n) in a)

1 a:=0 succli]
2 b:=1 1 2
3 7:=0 2| 3
4 LABEL loop 3] 4
5. IF n =z THEN end ELSE body ;_L 6513
6: LABEL body T
7. t:=a-+b 7 ]
8: a:=b g 9
9: b:=t 9 10
10 n:=n—1 10| 11
11: z:=0 1| 12
122 GOTO loop 12] 4
13 LABEL end 13




Liveness analysis: gen and kill
For each IR instruction, we define two functions:
m gen[i]: set of variables that may be read by instruction i
m kill[i]: set of variables that may be assigned a value by instruction i

‘ Instruction i ‘ genli] ‘ killli] ‘
LABEL / 0 0
X:=y o} {x}
x:=k 0 {x}
x = unopy DERG
X :=unop k 0 {x}
x :=y binop z Izt | {x}
x:=y binop k {y} {x}
x:= M| oy | {x}
x:=MI[k| 0 {x}
Mlx| =y frxyt| ©
Mk] =y ) 0
GOTO [ 0 0
IF x relop y THEN /; ELSE I | {x,y} 0
x:=CALL f(args) args | {x}




Liveness analysis: in and out

m For each program instruction i, we use two sets to hold liveness
information:

» in[i]: the variables that are live before instruction i
» out[i]: the variables that are live at the end of f

m in and out are defined by these two equations:
in[i] = gen[i] U (out[i] \ kill[i])

out[i] = U in[j]

Jj€succli]

m These equations can be solved by fixed-point iterations:
» Initialize in[i] and out[i] to empty sets
> lIterate over instructions (in reverse order, evaluating out first) until
convergence (i.e., no change)
m For the last instruction (succ[i] = 0)), out[i] is set of variables that
are live at the end of the program (i.e., used subsequently)



[[lustration

- = = =
Wy = 2

AP AN U~ A

a:=0
b:=1
7:=0
LABEL loop
IF n = z THEN end ELSE body
LABEL body
t:=a+b
a:=b
b:=t
n:=n—1
z:=0

GOTO loop
LABEL end

‘SMCC

‘ genli

] [ itl]i] |

a

b

Z

i
1
2
3
4
5
6
7
8
9

10

11

NI S|

12

13

(Mogensen)



[[lustration

Initial Iteration 1 Iteration 2 Iteration 3

i|| out]i] ‘ in[i] | outli] ‘ inli] out[i] ‘ inli] out|i] ‘ inli]

1 n,a n n,a n n,a n

2 n,a,b n,a n,a,b n,a n,a,b n,a
3 n,z,a,b| n,a,b \|\n,z,a,b| n,a,b |n,z,a,b| n,a,b
4 n,z,a,b|n,z,a,b\\n,z,a,b\n,z,a,b|\n,z,a,b|n,z,a,b
5 a,b,n |n,z,a,b| a,b,n |n,z,a,b|| a,b,n |n,z,a,b
6 a,b,n | a,b,n || a,b,n | a,b,n || a,b,n | a,b,n
7 b,t,n | a,b,n | b,t,n | a,b,n || b,t,n | a,b,n
8 t,n b,t,n t,n,a | b,t,n t,n,a | b,t,n
9 n t,n n,a,b | t,n,a || n,a,b | t,n,a
10 n n,a,b | n,a,b || n,a,b | n,a,b
11 n,z,a,b| n,a,b \|n,z,a,b| n,a,b
12 n,z,a,b|n,z,a,b\|\n,z,a,b|\n,z,a,b
13 a a a a a a

(Mogensen)



Interference

m A variable x interferes with another variable y if there is an
instruction i such that x € kill[i], y € out[i] and instruction i is not
X:=y

m Note:

» Different from x € out[i] and y € out[i]:

» if x is in kill[i] and not in out[i] (because x is never used after an
assignment), then it should interfere with y € out[i] (to allow
side-effects)

m Interference graph: undirected graph where each node is a variable
and two variables are connected if they interfere



[[lustration

Instruction | Left-hand side | Interferes with

1 a n
2 b n,a
3 z n,a,b
7 t b,n
8 a t,n
9 b n,a

10 n a,b

11 z n,a,b

a\\b//n

(Mogensen)



Register allocation

m Global register allocation: we assign to a variable the same register
throughout the program (or procedure)
m How to do it? Assign a register number (among N) to each node of
the interference graph such that
» Two nodes that are connected have different register numbers
» The total number of different register is no higher than the number of
available registers
m This is a problem of graph colouring (where colour number =
register number), which is known to be NP-complete

m Several heuristics have been proposed



Chaitin’s algorithm

A heuristic linear algorithm for k-coloring a graph

Algorithm:
> Select a node with fewer than k outgoing edges
» Remove it from the graph
» Recursively color the rest of the graph
» Add the node back in
> Assign it a valid color
Last step is always possible since the removed node has less than k
neighbors in the graph

Implementation: nodes are pushed on a stack as soon as they are
selected



[[lustration

Stack of nodes

Registers

R, FRTHEN R, |

(Keith Schwarz)



Chaitin’s algorithm

m What if we can not find a node with less than k neighbors?
m Choose and remove an arbitrary node, marking it as “troublesome”

m When adding node back in, it may still be possible to find a valid
color
m Otherwise, we will have to store it in memory.
» This is called spilling.



[[lustration

Stack of nodes

b
o
e’ . (spilled)

€) (&)

Boo oo

Registers

R, [R, N

(Keith Schwarz)



Spilling

m A spilled variable is stored in memory

m When we need a register for a spilled variable v, temporarily evict a
register to memory (since registers are supposed to be exhausted)

m When done with that register, write its value to the storage spot for
v (if necessary) and load the old value back

m Heuristics to choose the variable/node to spill:
» Pick one with close to N neighbors (increasing the chance to color it)
» Choose a node with many neighbors with close to N neighbors
(increase the chance of less spilling afterwards)
» Choose a variable that's not costly to spill (by looking at the program)



Register allocation

m We only scratched the surface of register allocation

m Many heuristics exist as well as different approaches (not using
graph coloring)

m GCC uses a variant of Chaitin’s algorithm



Outline

4. Memory management



Memory organization

Stack

gt
i)

Heap

Global/static data

Code

Memory is generally divided into four main parts:
m Code: contains the code of the program
m Static data: contains static data allocated at compile-time
m Stack: used for function calls and local variables
m Heap: for the rest (e.g., data allocated at run-time)

Computers have registers that contain addresses that delimits these
different parts



Static data

m Contains data allocated at compile-time
m Address of such data is then hardwired in the generated code

m Used e.g. in C to allocate global variables
m There are facilities in assemblers to allocate such space:
» Example to allocate an array of 4000 bytes

.data # go to data area for allocation

baseofA: # label for array A
.space 4000 # move current-address pointer up 4000 bytes
.text # go back to text area for code generation

m Limitations:

> size of the data must be known at compile-time
> Never freed even if the data is only used a fraction of time



Stack

Next activation records

Space for storing local variables for spill
and for storing live variables allocated to
caller-saves registers across function calls
Space for storing callee-saves registers that
are used in the body

Incoming parameters in excess of four
Return address

FP — | Static link (SL)

Previous activation records

m Mainly used to store activation records for function calls

m But can be used to allocate arrays and other data structures (e.g., in
C, to allocate local arrays)

m Allocation is quick and easy

m But sizes of arrays need to be known at compile-time and can only
be used for local variables (space is freed when the function returns)



Heap

m Used for dynamic memory allocations
m Size of arrays or structures need not to be known at compile-time
m Array sizes can be increased dynamically

m Two ways to manage data allocation/deallocation:

» Manual memory management
» Automatic memory management (or garbage collection)



Manual memory management

m The user is responsible for both data allocation and deallocation
» In C: malloc and free
> In object oriented languages: object constructors and destructors
m Advantages:
» Easier to implement than garbage collection

» The programmer can exercice precise control over memory usage
(allows better performances)

m Limitations
» The programmer has to exercice precise control over memory usage
(tedious)

» Easily leads to troublesome bugs: memory leaks, double frees,
use-after-frees...



A simple implementation
m Space is allocated by the operating system and then managed by the
program (through library functions such as malloc and free in C)

m A free list is maintained with all current free memory blocks
(initially, one big block)

— 12 28 20
>< ><

m Malloc:
» Search through the free list for a block of sufficient size
» If found, it is possibly split in two with one removed from free list
> If not found, ask operating system for a new chunck of memory

m Free:
» Insert the block back into the free list

Allocation is linear in the size of the free list, deallocation is done in
constant time



A simple implementation

m Block splitting leads to memory fragmentation

» The free list will eventually accumulate many small blocks
» Can be solved by joining consecutive freed blocks
» Makes free linear in free list size

m Complexity of malloc can be reduced

» Limit block sizes to power of 2 and have a free list for each size
» Makes malloc logarithmic in heap size

m Array resizing can be allowed by using indirection nodes

» When array is resized, it is copied into a new (bigger) block
> Indirection node address is updated accordingly



Garbage collection

m Allocation is still done with malloc or object constructors but
memory is automatically reclaimed

» Data/Objects that won't be used again are called garbage
» Reclaiming garbage objects automatically is called garbage collection

m Advantages:
» Programmer does not have to worry about freeing unused resources
m Limitations:

» Programmer can't reclaim unused resources
» Difficult to implement and add a significant overhead



Implementation 1: reference counting

m Idea: if no pointer to a block exists, the block can safely be freed

m Add an extra field in each memory block (of the free list) with a
count of the incoming pointers

>

>
>
>

When creating an object, set its counter to 0

When creating a reference to an object, increment its counter
When removing a reference, decrement its counter.

If zero, remove all outgoing references from that object and reclaim
the memory



Reference counting: illustration

class LinkedList {
LinkedList next; head 1
}

mid
int main() { i

LinkedList head = new LinkedList;
LinkedList mid = new LinkedList; tail - 2
LinkedList tail = new LinkedList;

head.next = mid; i
mid.next = tail;

head.next.next = null;

head = null;

(Keith Schwarz)



Reference counting

Straightforward to implement and can be combined with manual
memory management

Significant overhead when doing assignements for incrementing
counters

Impose constraints on the language

» No pointer to the middle of an object, should be able to distinguish
pointers from integers...

m Can not handle circular data structures

» As counters will never be zero
» E.g., doubly-linked lists



Implementation 2: tracing garbage collectors

m Idea: find all reachable blocks from the knowledge of what is
immediately accessible (the root set) and free all other blocks

m The root set is the set of memory locations that are known to be
reachable

> all variables in the program: registers, stack-allocated, global
variables. ..

m Any objects (resp. not) reachable from the root set are (resp. not)

reachable

Root Set




Tracing garbage collection: mark-and-sweep

m Mark-and-sweep garbage collection:
» Add a flag to each block
» Marking phase: go through the graph, e.g., depth-first, setting the
flag for all reached blocks
» Sweeping phase: go through the list of blocks and free all unflagged
ones
m Implementation of the mark stage with a stack:

> Initialized to the root set
» Retaining reachable blocks that have not yet been visited
m Tracing GC is typically called only when a malloc fails to avoid
pauses in the program

m Problem: stack requires memory (and a malloc has just failed)
» Marking phase can be implemented without a stack (at the expense
of computing times)
» Typically by adding descriptors within blocks



Implementation: tracing garbage collection

m Advantage:
» More precise than reference counting
» Can handle circular references
» Run time can be made proportional to the number of reachable
objects (typically much lower than number of free blocks)
m Disadvantages:

> Introduce huge pause times
» Consume lots of memory



Garbage collection

Other garbage collection methods:

m Two-space collection (stop-and-copying):

> Alternative to free lists

» Two allocation spaces of same size are maintained

» Blocks are always allocated in one space until full

» Garbage collection then copies all live objects to the other space and

swap their roles
m Generational collection:
» Maintain several spaces for different generations of objects, with
these spaces of increasing sizes
» Optimized according to the “objects die young” principle
m Concurrent and incremental collectors
» Perform collection incrementally or concurrently during execution of

the program
» Avoid long pauses but can reduce the total throughput



Part 7

Conclusion



Structure of a compiler

character stream l

Lexical analysis

token stream l

Syntax analysis

syntax tree l

Semantic analysis

syntax tree l

Intermediate code generation

intermediate representation l

Intermediate code optimization

intermediate representation l

Code generation

machine code l

Code optimization

machine code l



Summary

m Part 1, Introduction:
» Overview and motivation...
m Part 2, Lexical analysis:
» Regular expression, finite automata, implementation, Flex...

Part 3, Syntax analysis:

» Context-free grammar, top-down (predictive) parsing, bottom-up
parsing (SLR and operator precedence parsing)...

m Part 4, Semantic analysis:

» Syntax-directed translation, abstract syntax tree, type and scope
checking...

m Part 5, Intermediate code generation and optimization:
» Intermediate representations, IR code generation, optimization...
m Part 6, Code generation:

> Instruction selection, register allocation, liveliness analysis, memory
management...



More on compilers

m Our treatment of each compiler stage was superficial

m See reference books for more details (Transp. 4)

m Some things we have not discussed at all:
» Specificities of object-oriented or functional programming languages
» Machine dependent code optimization
> Parallelism
>

m Related topics:
» Natural language processing
» Domain-specific languages
L
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