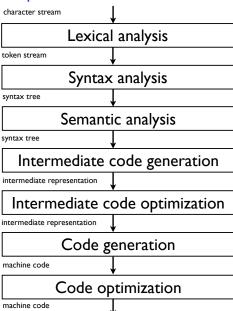
Part 3 Syntax analysis

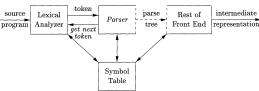
Outline

- 1. Introduction
- 2. Context-free grammar
- 3. Top-down parsing
- 4. Bottom-up parsing
- 5. Conclusion and some practical considerations

Structure of a compiler



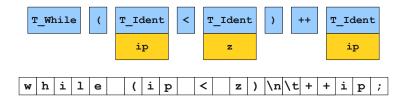
Syntax analysis



Goals:

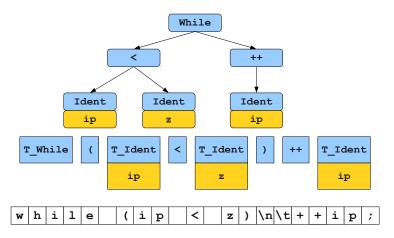
- recombine the tokens provided by the lexical analysis into a structure (called a syntax tree)
- Reject invalid texts by reporting syntax errors.
- Like lexical analysis, syntax analysis is based on
 - the definition of valid programs based on some formal languages,
 - the derivation of an algorithm to detect valid words (programs) from this language
- Formal language: context-free grammars
- Two main algorithm families: Top-down parsing and Bottom-up parsing

Example



(Keith Schwarz)

Example



(Keith Schwarz)

Reminder: grammar

- A grammar is a 4-tuple $G = (V, \Sigma, R, S)$, where:
 - V is an alphabet,
 - ▶ $\Sigma \subseteq V$ is the set of terminal symbols ($V \Sigma$ is the set of nonterminal symbols),
 - ▶ $R \subseteq (V^+ \times V^*)$ is a finite set of production rules
 - ▶ $S \in V \Sigma$ is the start symbol.
- Notations:
 - ▶ Nonterminal symbols are represented by uppercase letters: *A*,*B*,...
 - ▶ Terminal symbols are represented by lowercase letters: *a,b,...*
 - ▶ Start symbol written as *S*
 - **Empty** word: ϵ
 - ▶ A rule $(\alpha, \beta) \in R : \alpha \to \beta$
 - Rule combination: $A \rightarrow \alpha | \beta$
- Example: $\Sigma = \{a, b, c\}$, $V \Sigma = \{S, R\}$, R =

$$S \rightarrow R$$

$$S \rightarrow aSc$$

$$R \rightarrow \epsilon$$

$$R \rightarrow RbR$$

Reminder: derivation and language

Definitions:

- v can be *derived in one step* from u by G (noted $v \Rightarrow u$) iff u = xu'y, v = xv'y, and $u' \rightarrow v'$
- v can be *derived in several steps* from u by G (noted $v \stackrel{*}{\Rightarrow} u$) iff $\exists k \geq 0$ and $v_0 \dots v_k \in V^+$ such that $u = v_0, \ v = v_k, \ v_i \Rightarrow v_{i+1}$ for 0 < i < k
- The *language generated by a grammar G* is the set of words that can be derived from the start symbol:

$$L = \{ w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w \}$$

Example: derivation of aabcc from the previous grammar

 $\underline{S} \Rightarrow a\underline{S}c \Rightarrow aa\underline{S}cc \Rightarrow aa\underline{R}cc \Rightarrow aa\underline{R}bRcc \Rightarrow aab\underline{R}cc \Rightarrow aabcc$

Reminder: type of grammars

Chomsky's grammar hierarchy:

- Type 0: free or unrestricted grammars
- Type 1: context sensitive grammars
 - ▶ productions of the form $uXw \rightarrow uvw$, where u, v, w are arbitrary strings of symbols in V, with v non-null, and X a single nonterminal
- Type 2: context-free grammars (CFG)
 - ▶ productions of the form $X \rightarrow v$ where v is an arbitrary string of symbols in V, and X a single nonterminal.
- Type 3: regular grammars
 - ▶ Productions of the form $X \to a$, $X \to aY$ or $X \to \epsilon$ where X and Y are nonterminals and a is a terminal (equivalent to regular expressions and finite state automata)

Context-free grammars

- Regular languages are too limited for representing programming languages.
- Examples of languages not representable by a regular expression:
 - $L = \{a^n b^n | n \ge 0\}$
 - Balanced parentheses

$$L = \{\epsilon, (), (()), ()(), ((())), (())() \dots \}$$

Scheme programs

$$L = \{1, 2, 3, \dots, (lambda(x)(+x1))\}$$

- Context-free grammars are typically used for describing programming language syntaxes.
 - They are sufficient for most languages
 - They lead to efficient parsing algorithms

Context-free grammars for programming languages

- Terminals of the grammars are typically the tokens derived by the lexical analysis (in bold in rules)
- Divide the language into several syntactic categories (sub-languages)
- Common syntactic categories

 $Exp \rightarrow (Exp)$

- Expressions: calculation of values
- ▶ Statements: express actions that occur in a particular sequence
- ▶ Declarations: express properties of names used in other parts of the program

Derivation for context-free grammar

- Like for a general grammar
- Because there is only one nonterminal in the LHS of each rule, their order of application does not matter
- Two particular derivations
 - left-most: always expand first the left-most nonterminal (important for parsing)
 - right-most: always expand first the right-most nonterminal (canonical derivation)
- Examples

```
Left-most derivation: S \Rightarrow aTb \Rightarrow acSSb \Rightarrow accSb \Rightarrow S \rightarrow aTb|c S \Rightarrow aCSBb \Rightarrow accacbb S \rightarrow aCSB|S Right-most derivation: S \Rightarrow aTb \Rightarrow acSSb \Rightarrow acSaTbb \Rightarrow acSaSbb \Rightarrow acSaCbb \Rightarrow acSaSbb \Rightarrow acSaCbb \Rightarrow acSaCbb \Rightarrow acSaCbb \Rightarrow acCaCbb \Rightarrow acSaCbb \Rightarrow acCaCbb \Rightarrow acSaCbb \Rightarrow acCaCbb \Rightarrow acCaCb
```

Parse tree

- A parse tree abstracts the order of application of the rules
 - ► Each interior node represents the application of a production
 - ▶ For a rule $A \to X_1 X_2 \dots X_k$, the interior node is labeled by A and the children from left to right by X_1, X_2, \dots, X_k .
 - Leaves are labeled by nonterminals or terminals and read from left to right represent a string generated by the grammar
- A derivation encodes how to produce the input
- A parse tree encodes the structure of the input
- Syntax analysis = recovering the parse tree from the tokens

Parse trees

$$S \rightarrow aTb|c$$

$$T \rightarrow cSS|S$$

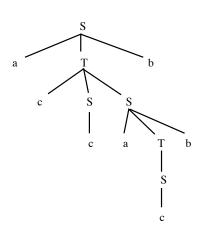
$$w = accacbb$$

Left-most derivation:

$$S \Rightarrow aTb \Rightarrow acSSb \Rightarrow accSb \Rightarrow accaTbb \Rightarrow accaSbb \Rightarrow accacbb$$

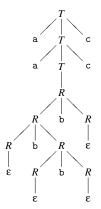
Right-most derivation:

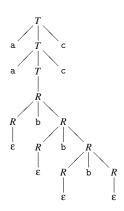
$$S \Rightarrow aTb \Rightarrow acSSb \Rightarrow acSaTbb \Rightarrow acSaSbb \Rightarrow acSacbb \Rightarrow accacbb$$



Parse tree

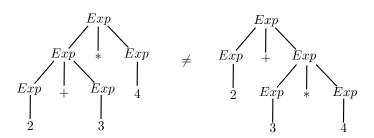
$$egin{array}{lll} T &
ightarrow & R \ T &
ightarrow & aTc \ R &
ightarrow & \epsilon \ R &
ightarrow & RbR \end{array}$$





Ambiguity

- The order of derivation does not matter but the chosen production rules do
- **Definition:** A CFG is ambiguous if there is at least one string with two or more parse trees
- Ambiguity is not problematic when dealing with flat strings. It is when dealing with language semantics



Detecting and solving Ambiguity

- There is no mechanical way to determine if a grammar is (un)ambiguous (this is an undecidable problem)
- In most practical cases however, it is easy to detect and prove ambiguity.
 - E.g., any grammar containing $N \to N\alpha N$ is ambiguous (two parse trees for $N\alpha N\alpha N$).
- How to deal with ambiguities?
 - Modify the grammar to make it unambiguous
 - ► Handle these ambiguities in the parsing algorithm
- Two common sources of ambiguity in programming languages
 - Expression syntax (operator precedences)
 - Dangling else

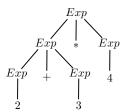
Operator precedence

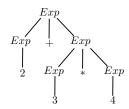
This expression grammar is ambiguous

$$\begin{array}{cccc} Exp & \rightarrow & Exp + Exp \\ Exp & \rightarrow & Exp - Exp \\ Exp & \rightarrow & Exp * Exp \\ Exp & \rightarrow & Exp/Exp \\ Exp & \rightarrow & num \\ Exp & \rightarrow & (Exp) \end{array}$$

(it contains $N \to N\alpha N$)

■ Parsing of 2 + 3 * 4





Operator associativity

- Types of operator associativity:
 - ▶ An operator \oplus is left-associative if $a \oplus b \oplus c$ must be evaluated from left to right, i.e., as $(a \oplus b) \oplus c$
 - ▶ An operator \oplus is right-associative if $a \oplus b \oplus c$ must be evaluated from right to left, i.e., as $a \oplus (b \oplus c)$
 - ▶ An operator \oplus is non-associative if expressions of the form $a \oplus b \oplus c$ are not allowed

Examples:

- ▶ and / are typically left-associative
- + and * are mathematically associative (left or right). By convention, we take them left-associative as well
- List construction in functional languages is right-associative
- Arrows operator in C is right-associative (a->b->c is equivalent to a->(b->c))
- ► In Pascal, comparison operators are non-associative (you can not write 2 < 3 < 4)

Rewriting ambiguous expression grammars

Let's consider the following ambiguous grammar:

$$E \rightarrow E \oplus E$$
 $E \rightarrow \text{num}$

If \oplus is left-associative, we rewrite it as a left-recursive (a recursive reference only to the left). If \oplus is right-associative, we rewrite it as a right-recursive (a recursive reference only to the right).

⊕ left-associative

$$E \rightarrow E \oplus E'$$

$$E \rightarrow E'$$

⊕ right-associative

$$E \rightarrow E' \oplus E$$

$$E \rightarrow E'$$

$$E' \rightarrow num$$

Mixing operators of different precedence levels

Introduce a different nonterminal for each precedence level

Non-ambiguous

Ambiguous $Exp \rightarrow Exp + Exp$ $Exp \rightarrow Exp - Exp$ $Exp \rightarrow Exp * Exp$ $Exp \rightarrow Exp/Exp$ $Exp \rightarrow num$ $Exp \rightarrow (Exp)$

$$Exp \rightarrow Exp + Exp2$$

$$Exp \rightarrow Exp - Exp2$$

$$Exp \rightarrow Exp2$$

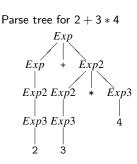
$$Exp2 \rightarrow Exp2 * Exp3$$

$$Exp2 \rightarrow Exp2/Exp3$$

$$Exp2 \rightarrow Exp3$$

$$Exp3 \rightarrow num$$

$$Exp3 \rightarrow (Exp)$$



Dangling else

Else part of a condition is typically optional

```
Stat \rightarrow  if Exp then Stat Else Stat Stat \rightarrow  if Exp then Stat
```

- How to match if p then if q then s1 else s2?
- Convention: else matches the closest not previously matched if.
- Unambiguous grammar:

```
Stat \rightarrow Matched | Unmatched
```

 $Matched \rightarrow \mathbf{if} \ \textit{Exp} \ \mathbf{then} \ \textit{Matched} \ \mathbf{else} \ \textit{Matched}$

 ${\it Matched} \ \ \rightarrow \ \ \ "Any other statement"$

 $Unmatched \rightarrow \mathbf{if} \ Exp \ \mathbf{then} \ Stat$

 $Unmatched \rightarrow if Exp then Matched else Unmatched$

End-of-file marker

- Parsers must read not only terminal symbols such as +,-, num , but also the end-of-file
- We typically use \$ to represent end of file
- If S is the start symbol of the grammar, then a new start symbol S' is added with the following rules $S' \to S$ \$.

Non-context free languages

- Some syntactic constructs from typical programming languages cannot be specified with CFG
- Example 1: ensuring that a variable is declared before its use
 - $L_1 = \{wcw|w \text{ is in } (a|b)^*\}$ is not context-free
 - ▶ In C and Java, there is one token for all identifiers
- Example 2: checking that a function is called with the right number of arguments
 - ▶ $L_2 = \{a^n b^m c^n d^m | n \ge 1 \text{ and } m \ge 1\}$ is not context-free
 - ▶ In C, the grammar does not count the number of function arguments

$$\begin{array}{ccc} \textit{stmt} & \rightarrow & \textbf{id} \; (\textit{expr_list}) \\ \textit{expr_list} & \rightarrow & \textit{expr_list}, \textit{expr} \\ & | & \textit{expr} \end{array}$$

■ These constructs are typically dealt with during semantic analysis

Backus-Naur Form

- A text format for describing context-free languages
- We ask you to provide the source grammar for your project in this format
- Example:

More information:

http://en.wikipedia.org/wiki/Backus-Naur_form

Outline

- Introduction
- 2. Context-free grammar
- 3. Top-down parsing
- 4. Bottom-up parsing
- 5. Conclusion and some practical considerations

Syntax analysis

Goals:

- Checking that a program is accepted by the context-free grammar
- Building the parse tree
- Reporting syntax errors

■ Two ways:

- ► Top-down: from the start symbol to the word
- Bottom-up: from the word to the start symbol

Top-down and bottom-up: example

Grammar:

$$S \rightarrow AB$$

 $A \rightarrow aA | \epsilon$
 $B \rightarrow b | bB$

Top-down parsing of aaab S AB $S \rightarrow AB$ AAB $A \rightarrow aA$ ABB $A \rightarrow AB$ ABB $A \rightarrow AB$

```
Bottom-up parsing of aaab aaab aaaeb (insert e) aaaAb A \rightarrow e aaAb A \rightarrow aA aAb A \rightarrow aA Ab A \rightarrow aA AB B \rightarrow b S S \rightarrow AB
```

A naive top-down parser

- A very naive parsing algorithm:
 - Generate all possible parse trees until you get one that matches your input
 - ▶ To generate all parse trees:
 - Start with the root of the parse tree (the start symbol of the grammar)
 - 2. Choose a non-terminal A at one leaf of the current parse tree
 - 3. Choose a production having that non-terminal as LHS, eg., $A \to X_1 X_2 \dots X_k$
 - 4. Expand the tree by making X_1, X_2, \dots, X_k , the children of A.
 - 5. Repeat at step 2 until all leaves are terminals
 - Repeat the whole procedure by changing the productions chosen at step 3

(Note: the choice of the non-terminal in Step 2 is irrevelant for a context-free grammar)

■ This algorithm is very inefficient, does not always terminate, etc.

Top-down parsing with backtracking

- Modifications of the previous algorithm:
 - Depth-first development of the parse tree (corresponding to a left-most derivation)
 - 2. Process the terminals in the RHS during the development of the tree, checking that they match the input
 - 3. If they don't at some step, stop expansion and restart at the previous non-terminal with another production rules (backtracking)
- Depth-first can be implemented by storing the unprocessed symbols on a stack
- Because of the left-most derivation, the inputs can be processed from left to right

Backtracking example

	Stack	Inputs	Action
	5	bcd	Try $S o bab$
	bab	bcd	match b
$\mathcal{S} \hspace{0.1cm} o \hspace{0.1cm} \mathit{bab}$	ab	cd	dead-end, backtrack
$S \rightarrow bA$	S	bcd	Try $\mathcal{S} o b\mathcal{A}$
$A \rightarrow d$	bA	bcd	match <i>b</i>
	Α	cd	Try $A o d$
$A \rightarrow cA$	d	cd	dead-end, backtrack
	Α	cd	Try $A o cA$
	сA	cd	match <i>c</i>
w = bcd	Α	d	Try $A o d$
W — BCu	d	d	$match\ d$
			Success!

Top-down parsing with backtracking

• General algorithm (to match a word w):

```
Create a stack with the start symbol
X = POP()
a = GETNEXTTOKEN()
while (True)
    if (X is a nonterminal)
         Pick next rule to expand X \to Y_1 Y_2 \dots Y_k
         Push Y_k, Y_{k-1}, \dots, Y_1 on the stack
         X = POP()
    elseif (X == \$  and a == \$)
         Accept the input
    elseif (X == a)
         a = GETNEXTTOKEN()
         X = POP()
    else
         Backtrack
```

- Ok for small grammars but still untractable and very slow for large grammars
- Worst-case exponential time in case of syntax error

Another example

	Stack	Inputs	Action
C CLT	S	accbbadbc	Try $S \rightarrow aSbT$
$S \rightarrow aSbT$	aSbT	accbbadbc	match <i>a</i>
$S \rightarrow cT$	SbT	accbbadbc	Try $S o aSbT$
$S \rightarrow d$	aSbTbT	accbbadbc	match <i>a</i>
	SbTbT	ccbbadbc	Try $S o cT$
T ightarrow aT	cTbTbT	ccbbadbc	match c
T ightarrow bS	TbTbT	cbbadbc	Try $T o c$
$T \rightarrow c$	cbTbT	cbbadbc	match <i>cb</i>
$I \rightarrow C$	TbT	badbc	Try $T o bS$
	bSbT	badbc	match b
	SbT	adbc	Try $S o aSbT$
	aSbT	adbc	match a
	С	С	match <i>c</i>
w = accbbadbc			Success!

Predictive parsing

- Predictive parser:
 - In the previous example, the production rule to apply can be predicted based solely on the next input symbol and the current nonterminal
 - Much faster than backtracking but this trick works only for some specific grammars
- Grammars for which top-down predictive parsing is possible by looking at the next symbol are called LL(1) grammars:
 - L: left-to-right scan of the tokens
 - L: leftmost derivation
 - ▶ (1): One token of lookahead
- Predicted rules are stored in a parsing table *M*:
 - ► M[X, a] stores the rule to apply when the nonterminal X is on the stack and the next input terminal is a

Example: parse table

$$S \rightarrow E\$$$

 $E \rightarrow int$
 $E \rightarrow (E Op E)$
 $Op \rightarrow +$
 $Op \rightarrow *$

	int	()	+	*	\$
S	E\$	E\$				
Е	int	(E Op E)				
Ор				+	*	

(Keith Schwarz)

Example: successfull parsing

- 1. $S \rightarrow E\$$
- 2. $E \rightarrow \mathtt{int}$
- 3. $E \rightarrow$ (E Op E)
- 4. Op \rightarrow +
- 5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Е	2	3				
Ор				4	5	

S	(int + (int * int))\$
E\$	(int + (int * int))\$
(E Op E)\$	(int + (int * int))\$
E Op E) \$	int + (int * int))\$
int Op E)\$	int + (int * int))\$
Op E) \$	+ (int * int))\$
+ E) \$	+ (int * int))\$
E) \$	(int * int))\$
(E Op E))\$	(int * int))\$
E Op E))\$	int * int))\$
int Op E))\$	int * int))\$
Op E))\$	* int))\$
* E))\$	* int))\$
E))\$	int))\$
int))\$	int))\$
))\$))\$
)\$)\$
\$	\$

(Keith Schwarz)

Example: erroneous parsing

2. $E \rightarrow \mathtt{int}$

3. $E \rightarrow (E Op E)$

4. Op \rightarrow +

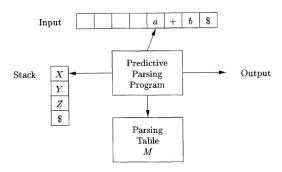
5. Op \rightarrow -

	int	()	+	*	\$
S	1	1				
Ε	2	3				
Ор				4	5	

S	(int (int))\$
E\$	(int (int))\$
(E Op E) \$	(int (int))\$
E Op E) \$	int (int))\$
int Op E)\$	int (int))\$
Op E) \$	(int))\$

(Keith Schwarz)

Table-driven predictive parser



(Dragonbook)

Table-driven predictive parser

```
Create a stack with the start symbol
X = POP()
a = GETNEXTTOKEN()
while (True)
     if (X is a nonterminal)
         if (M[X, a] == NULL)
              Frror
         elseif (M[X, a] == X \rightarrow Y_1 Y_2 \dots Y_k)
              Push Y_k, Y_{k-1}, \dots, Y_1 on the stack
              X = POP()
     elseif (X == \$ \text{ and } a == \$)
         Accept the input
     elseif (X == a)
         a = GETNEXTTOKEN()
         X = POP()
     else
         Frror
```

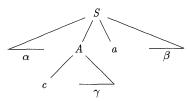
LL(1) grammars and parsing

Three questions we need to address:

- How to build the table for a given grammar?
- How to know if a grammar is LL(1)?
- How to change a grammar to make it LL(1)?

Building the table

- It is useful to define three functions (with A a nonterminal and α any sequence of grammar symbols):
 - *Nullable*(α) is true if $\alpha \stackrel{*}{\Rightarrow} \epsilon$
 - ► First(α) returns the set of terminals c such that $\alpha \stackrel{*}{\Rightarrow} c\gamma$ for some (possibly empty) sequence γ of grammar symbols
 - ► Follow(A) returns the set of terminals a such that $S \stackrel{*}{\Rightarrow} \alpha Aa\beta$, where α and β are (possibly empty) sequences of grammar symbols



 $(c \in First(A) \text{ and } a \in Follow(A))$

Building the table from First, Follow, and Nullable

To construct the table:

- Start with the empty table
- For each production $A \rightarrow \alpha$:
 - ▶ add $A \rightarrow \alpha$ to M[A, a] for each terminal a in $First(\alpha)$
 - ▶ If $Nullable(\alpha)$, add $A \rightarrow \alpha$ to M[A, a] for each a in Follow(A)

First rule is obvious. Illustration of the second rule:

$$S o Ab$$
 $Nullable(A) = True$ $A o c$ $First(A) = \{c\}$ $M[A, b] = A o \epsilon$ $A o \epsilon$ $Follow(A) = \{b\}$

LL(1) grammars

- Three situations:
 - ▶ M[A, a] is empty: no production is appropriate. We can not parse the sentence and have to report a syntax error
 - ► M[A, a] contains one entry: perfect!
 - ► *M*[*A*, *a*] contains two entries: the grammar is not appropriate for predictive parsing (with one token lookahead)
- **Definition:** A grammar is LL(1) if its parsing table contains at most one entry in each cell or, equivalently, if for all production pairs $A \to \alpha | \beta$
 - $First(\alpha) \cap First(\beta) = \emptyset$,
 - $Nullable(\alpha)$ and $Nullable(\beta)$ are not both true,
 - ▶ if $Nullable(\beta)$, then $First(\alpha) \cap Follow(A) = \emptyset$
- **Example** of a non LL(1) grammar:

$$\begin{array}{ccc}
S & \to & Ab \\
A & \to & b \\
A & \to & \epsilon
\end{array}$$

Computing Nullable

Algorithm to compute Nullable for all grammar symbols

```
Initialize Nullable to False. 

repeat for each production X \to Y_1 Y_2 \dots Y_k if Y_1 \dots Y_k are all nullable (or if k=0) Nullable(X) = True until Nullable did not change in this iteration.
```

Algorithm to compute *Nullable* for any string $\alpha = X_1 X_2 \dots X_k$:

Computing First

for i = 1 to k

Algorithm to compute First for all grammar symbols

if $X_1 ... X_{i-1}$ are all nullable (or i = 1) $First(\alpha) = First(\alpha) \cup First(X_i)$

Computing Follow

To compute Follow for all nonterminal symbols

```
Initialize Follow to empty sets. 

repeat for each production X \to Y_1 Y_2 \dots Y_k for i=1 to k, for j=i+1 to k if Y_{i+1} \dots Y_k are all nullable (or i=k) Follow(Y_i) = Follow(Y_i) \cup Follow(X) if Y_{i+1} \dots Y_{j-1} are all nullable (or i+1=j) Follow(Y_i) = Follow(Y_i) \cup First(Y_j) until Follow did not change in this iteration.
```

Example

Compute the parsing table for the following grammar:

$$S \rightarrow E\$$$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'$$

$$E' \rightarrow \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT'$$

$$T' \rightarrow \epsilon$$

$$F \rightarrow id$$

$$F \rightarrow num$$

$$F \rightarrow (E)$$

Example

Nonterminals	Nullable	First	Follow		
S	False	{(, id , num }	Ø		
E	False	$\{(, id, num \}$	$\{),\$\}$		
E'	True	$\{+, -\}$	$\{), \$\}$		
Т	False	$\{(, id, num \}$	$\{),+,-,\$\}$		
T'	True	$\{*,/\}$	$\{),+,-,\$\}$		
F	False	$\{(, id, num \}$	$\{),*,/,+,-,\$\}$		

LL(1) parsing summary so far

Construction of a LL(1) parser from a CFG grammar

- Eliminate ambiguity
- Add an extra start production $S' \rightarrow S$ \$ to the grammar
- Calculate First for every production and Follow for every nonterminal
- Calculate the parsing table
- Check that the grammar is LL(1)

Next course:

- Transformations of a grammar to make it LL(1)
- Recursive implementation of the predictive parser

Bottom-up parsing techniques

Transforming a grammar for LL(1) parsing

- Ambiguous grammars are not LL(1) but unambiguous grammars are not necessarily LL(1)
- Having a non-LL(1) unambiguous grammar for a language does not mean that this language is not LL(1).
- But there are languages for which there exist unambiguous context-free grammars but no LL(1) grammar.
- We will see two grammar transformations that improve the chance to get a LL(1) grammar:
 - Elimination of left-recursion
 - Left-factorization

Left-recursion

■ The following expression grammar is unambiguous but it is not *LL*(1):

$$Exp \rightarrow Exp + Exp2$$

$$Exp \rightarrow Exp - Exp2$$

$$Exp \rightarrow Exp2$$

$$Exp2 \rightarrow Exp2 * Exp3$$

$$Exp2 \rightarrow Exp2/Exp3$$

$$Exp2 \rightarrow Exp3$$

$$Exp3 \rightarrow num$$

$$Exp3 \rightarrow (Exp)$$

- Indeed, $First(\alpha)$ is the same for all RHS α of the productions for Exp et Exp2
- This is a consequence of *left-recursion*.

Left-recursion

- Recursive productions are productions defined in terms of themselves. Examples: $A \rightarrow Ab$ ou $A \rightarrow bA$.
- When the recursive nonterminal is at the left (resp. right), the production is said to be left-recursive (resp. right-recursive).
- Left-recursive productions can be rewritten with right-recursive productions
- Example:

Right-recursive expression grammar

				Ехр	\rightarrow	Exp2Exp'
Ехр	\rightarrow	Exp + Exp2		Exp'	\rightarrow	+Exp2Exp'
Ехр	\rightarrow	Exp - Exp2		Exp'	\rightarrow	-Exp2Exp'
Ехр	\rightarrow	Exp2		Exp'	\rightarrow	ϵ
Exp2	\rightarrow	Exp2 * Exp3		Exp2	\rightarrow	Exp3Exp2'
Exp2	\rightarrow	Exp2/Exp3		Exp2'	\rightarrow	*Exp3Exp2'
Exp2	\rightarrow	Exp3	\Leftrightarrow	Exp2'	\rightarrow	/Exp3Exp2'
Ехр3	\rightarrow	num		Exp2'	\rightarrow	ϵ
Ехр3	\rightarrow	(Exp)		Ехр3	\rightarrow	num
				Exp3	\rightarrow	$(F_{\times p})$

Left-factorisation

■ The RHS of these two productions have the same *First* set.

```
Stat \rightarrow  if Exp then Stat else Stat Stat \rightarrow  if Exp then Stat
```

■ The problem can be solved by left factorising the grammar:

Note

The resulting grammar is ambiguous and the parsing table will contain two rules for M[ElseStat, else] (because else ∈ Follow(ElseStat) and else ∈ First(else Stat))

► Ambiguity can be solved in this case by letting M[ElseStat, else] = {ElseStat → else Stat}.

Hidden left-factors and hidden left recursion

- Sometimes, left-factors or left recursion are hidden
- Examples:
 - ▶ The following grammar:

$$A \rightarrow da|acB$$

 $B \rightarrow abB|daA|Af$

has two overlapping productions: $B \rightarrow daA$ and $B \stackrel{*}{\Rightarrow} daf$.

► The following grammar:

$$S \rightarrow Tu|wx$$

 $T \rightarrow Sq|vvS$

has left recursion on T ($T \stackrel{*}{\Rightarrow} Tuq$)

 Solution: expand the production rules by substitution to make left-recursion or left factors visible and then eliminate them

Summary

Construction of a LL(1) parser from a CFG grammar

- Eliminate ambiguity
- Eliminate left recursion
- left factorization
- lacksquare Add an extra start production S' o S\$ to the grammar
- Calculate First for every production and Follow for every nonterminal
- Calculate the parsing table
- Check that the grammar is LL(1)

Recursive implementation

 From the parsing table, it is easy to implement a predictive parser recursively (with one function per nonterminal)

 $T' \rightarrow T$ \$

 $T \rightarrow R$

```
function parseT'() =
  if next = 'a' or next = 'b' or next = '$' then
   parseT() ; match('$')
 else reportError()
function parseT() =
  if next = 'b' or next = 'c' or next = '$' then
  parseR()
    match('a') ; parseT() ; match('c')
  else reportError()
function parseR() =
  if next = 'c' or next = '$' then
    (* do nothing *)
  else if next = 'b' then
    match('b'); parseR()
  else reportError()
```

(Mogensen)