Part 3

Syntax analysis

Outline

1. Introduction
2. Context-free grammar
3. Top-down parsing
4. Bottom-up parsing
5. Conclusion and some practical considerations

Structure of a compiler

Syntax analysis

- Goals:
- recombine the tokens provided by the lexical analysis into a structure (called a syntax tree)
- Reject invalid texts by reporting syntax errors.

■ Like lexical analysis, syntax analysis is based on

- the definition of valid programs based on some formal languages,
- the derivation of an algorithm to detect valid words (programs) from this language
- Formal language: context-free grammars
- Two main algorithm families: Top-down parsing and Bottom-up parsing

Example

Example

Reminder: grammar

- A grammar is a 4-tuple $G=(V, \Sigma, R, S)$, where:
- V is an alphabet,
- $\Sigma \subseteq V$ is the set of terminal symbols ($V-\Sigma$ is the set of nonterminal symbols),
- $R \subseteq\left(V^{+} \times V^{*}\right)$ is a finite set of production rules
- $S \in V-\Sigma$ is the start symbol.
- Notations:
- Nonterminal symbols are represented by uppercase letters: A, B, \ldots
- Terminal symbols are represented by lowercase letters: a, b, \ldots
- Start symbol written as S
- Empty word: ϵ
- A rule $(\alpha, \beta) \in R: \alpha \rightarrow \beta$
- Rule combination: $A \rightarrow \alpha \mid \beta$

■ Example: $\Sigma=\{a, b, c\}, V-\Sigma=\{S, R\}, R=$

$$
\begin{aligned}
& S \rightarrow R \\
& S \rightarrow a S c \\
& R \rightarrow \epsilon \\
& R \rightarrow R b R
\end{aligned}
$$

Reminder: derivation and language

Definitions:
■ v can be derived in one step from u by G (noted $v \Rightarrow u$) iff $u=x u^{\prime} y, v=x v^{\prime} y$, and $u^{\prime} \rightarrow v^{\prime}$

- v can be derived in several steps from u by G (noted $v \stackrel{*}{\Rightarrow} u$) iff $\exists k \geq 0$ and $v_{0} \ldots v_{k} \in V^{+}$such that $u=v_{0}, v=v_{k}, v_{i} \Rightarrow v_{i+1}$ for $0 \leq i<k$
- The language generated by a grammar G is the set of words that can be derived from the start symbol:

$$
L=\left\{w \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} w\right\}
$$

Example: derivation of aabcc from the previous grammar

$$
\underline{S} \Rightarrow a \underline{S} c \Rightarrow a a \underline{S} c c \Rightarrow a a \underline{R} c c \Rightarrow a a \underline{R} b R c c \Rightarrow a a b \underline{R} c c \Rightarrow a a b c c
$$

Reminder: type of grammars

Chomsky's grammar hierarchy:

- Type 0: free or unrestricted grammars
- Type 1: context sensitive grammars
- productions of the form $u X w \rightarrow u v w$, where u, v, w are arbitrary strings of symbols in V, with v non-null, and X a single nonterminal
- Type 2: context-free grammars (CFG)
- productions of the form $X \rightarrow v$ where v is an arbitrary string of symbols in V, and X a single nonterminal.
- Type 3: regular grammars
- Productions of the form $X \rightarrow a, X \rightarrow a Y$ or $X \rightarrow \epsilon$ where X and Y are nonterminals and a is a terminal (equivalent to regular expressions and finite state automata)

Context-free grammars

- Regular languages are too limited for representing programming languages.
- Examples of languages not representable by a regular expression:
- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- Balanced parentheses

$$
L=\{\epsilon,(),(()),()(),((())),(())() \ldots\}
$$

- Scheme programs

$$
L=\{1,2,3, \ldots,(\operatorname{lambda}(x)(+x 1))\}
$$

- Context-free grammars are typically used for describing programming language syntaxes.
- They are sufficient for most languages
- They lead to efficient parsing algorithms

Context-free grammars for programming languages

- Terminals of the grammars are typically the tokens derived by the lexical analysis (in bold in rules)
■ Divide the language into several syntactic categories (sub-languages)
- Common syntactic categories
- Expressions: calculation of values
- Statements: express actions that occur in a particular sequence
- Declarations: express properties of names used in other parts of the program

$$
\begin{aligned}
& \text { Exp } \rightarrow E \times p+E x p \\
& \text { Exp } \rightarrow E \times p-E x p \\
& \text { Exp } \rightarrow E x p * E x p \\
& \text { Exp } \rightarrow \text { Exp/Exp } \\
& \text { Exp } \rightarrow \text { num } \\
& \text { Exp } \rightarrow \text { id } \\
& \text { Exp } \rightarrow \text { (Exp) }
\end{aligned}
$$

Derivation for context-free grammar

- Like for a general grammar
- Because there is only one nonterminal in the LHS of each rule, their order of application does not matter
- Two particular derivations
- left-most: always expand first the left-most nonterminal (important for parsing)
- right-most: always expand first the right-most nonterminal (canonical derivation)
- Examples

	Left-most derivation:
$S \Rightarrow a T b \Rightarrow a c S S b \Rightarrow a c c S b \Rightarrow$	
$S \rightarrow a T b \mid c$	accaTbb $\Rightarrow a c c a S b b \Rightarrow a c c a c b b$
$T \rightarrow c S S \mid S$	Right-most derivation: $S \Rightarrow a T b \Rightarrow a c S S b \Rightarrow a c S a T b b \Rightarrow$ $w=a c c a c b b$

Parse tree

- A parse tree abstracts the order of application of the rules
- Each interior node represents the application of a production
- For a rule $A \rightarrow X_{1} X_{2} \ldots X_{k}$, the interior node is labeled by A and the children from left to right by $X_{1}, X_{2}, \ldots, X_{k}$.
- Leaves are labeled by nonterminals or terminals and read from left to right represent a string generated by the grammar
- A derivation encodes how to produce the input
- A parse tree encodes the structure of the input

■ Syntax analysis $=$ recovering the parse tree from the tokens

Parse trees

$$
\begin{aligned}
& S \rightarrow a T b \mid c \\
& T \rightarrow c S S \mid S \\
& w=a c c a c b b
\end{aligned}
$$

Left-most derivation:
$S \Rightarrow a T b \Rightarrow a c S S b \Rightarrow a c c S b \Rightarrow$ $a c c a T b b \Rightarrow a c c a S b b \Rightarrow a c c a c b b$

Right-most derivation:
$S \Rightarrow a T b \Rightarrow a c S S b \Rightarrow a c S a T b b \Rightarrow$
 $a c S a S b b \Rightarrow a c S a c b b \Rightarrow a c c a c b b$

Parse tree

$$
\begin{aligned}
& T \rightarrow R \\
& T \rightarrow a T c \\
& R \rightarrow \epsilon \\
& R \rightarrow R b R
\end{aligned}
$$

Ambiguity

- The order of derivation does not matter but the chosen production rules do
- Definition: A CFG is ambiguous if there is at least one string with two or more parse trees
- Ambiguity is not problematic when dealing with flat strings. It is when dealing with language semantics

Detecting and solving Ambiguity

- There is no mechanical way to determine if a grammar is (un)ambiguous (this is an undecidable problem)
■ In most practical cases however, it is easy to detect and prove ambiguity.
E.g., any grammar containing $N \rightarrow N \alpha N$ is ambiguous (two parse trees for $N \alpha N \alpha N$).
- How to deal with ambiguities?
- Modify the grammar to make it unambiguous
- Handle these ambiguities in the parsing algorithm
- Two common sources of ambiguity in programming languages
- Expression syntax (operator precedences)
- Dangling else

Operator precedence

- This expression grammar is ambiguous

$$
\begin{aligned}
& E x p \rightarrow E x p+E x p \\
& E x p \rightarrow E x p-E x p \\
& E x p \rightarrow E x p * E x p \\
& E x p \rightarrow E x p / E x p \\
& E x p \rightarrow \text { num } \\
& E x p \rightarrow(E x p)
\end{aligned}
$$

(it contains $N \rightarrow N \alpha N$)

- Parsing of $2+3 * 4$

Operator associativity

- Types of operator associativity:
- An operator \oplus is left-associative if $a \oplus b \oplus c$ must be evaluated from left to right, i.e., as $(a \oplus b) \oplus c$
- An operator \oplus is right-associative if $a \oplus b \oplus c$ must be evaluated from right to left, i.e., as $a \oplus(b \oplus c)$
- An operator \oplus is non-associative if expressions of the form $a \oplus b \oplus c$ are not allowed
- Examples:
- - and / are typically left-associative
- + and $*$ are mathematically associative (left or right). By convention, we take them left-associative as well
- List construction in functional languages is right-associative
- Arrows operator in C is right-associative $(a->b->c$ is equivalent to $a->(b->c))$
- In Pascal, comparison operators are non-associative (you can not write $2<3<4$)

Rewriting ambiguous expression grammars

■ Let's consider the following ambiguous grammar:

$$
\begin{aligned}
& E \rightarrow E \oplus E \\
& E \rightarrow \text { num }
\end{aligned}
$$

- If \oplus is left-associative, we rewrite it as a left-recursive (a recursive reference only to the left). If \oplus is right-associative, we rewrite it as a right-recursive (a recursive reference only to the right).
\oplus left-associative

$$
\begin{aligned}
E & \rightarrow E \oplus E^{\prime} \\
E & \rightarrow E^{\prime} \\
E^{\prime} & \rightarrow \text { num }
\end{aligned}
$$

\oplus right-associative

$$
\begin{aligned}
E & \rightarrow E^{\prime} \oplus E \\
E & \rightarrow E^{\prime} \\
E^{\prime} & \rightarrow \text { num }
\end{aligned}
$$

Mixing operators of different precedence levels

■ Introduce a different nonterminal for each precedence level

Non-ambiguous

Ambiguous			Exp	\rightarrow	$E x p+E x p 2$	Parse tree for $2+3 * 4$
Exp	\rightarrow	$E x p+E x p$	Exp	\rightarrow	Exp - Exp2	Exp
Exp	\rightarrow	$E x p-E x p$	Exp	\rightarrow	Exp2	Exp + Exp 2
Exp	\rightarrow	$E x p * E x p$	Exp2	\rightarrow	Exp 2 * Exp3	
Exp	\rightarrow	Exp/Exp	Exp2	\rightarrow	Exp2/Exp3	Exp $2 \operatorname{Exp} 2$ * Exp3
Exp	\rightarrow	num	Exp2	\rightarrow	Exp3	Exp 3 Exp 3
Exp	\rightarrow	(Exp)	Exp3	\rightarrow	num	
			Exp3	\rightarrow	(Exp)	23

Dangling else

- Else part of a condition is typically optional

$$
\begin{aligned}
& \text { Stat } \rightarrow \text { if Exp then Stat Else Stat } \\
& \text { Stat } \rightarrow \text { if Exp then Stat }
\end{aligned}
$$

- How to match if p then if q then $s 1$ else $s 2$?

■ Convention: else matches the closest not previously matched if.
■ Unambiguous grammar:

$$
\begin{aligned}
\text { Stat } & \rightarrow \text { Matched } \mid \text { Unmatched } \\
\text { Matched } & \rightarrow \text { if Exp then Matched else Matched } \\
\text { Matched } & \rightarrow \text { "Any other statement" } \\
\text { Unmatched } & \rightarrow \text { if Exp then Stat } \\
\text { Unmatched } & \rightarrow \text { if Exp then Matched else Unmatched }
\end{aligned}
$$

End-of-file marker

■ Parsers must read not only terminal symbols such as,+- , num , but also the end-of-file
■ We typically use $\$$ to represent end of file
■ If S is the start symbol of the grammar, then a new start symbol S^{\prime} is added with the following rules $S^{\prime} \rightarrow S \$$.

$$
\begin{aligned}
S & \rightarrow \text { Exp\$ } \\
E x p & \rightarrow \text { Exp }+E_{x p 2} \\
E x p & \rightarrow E x p-E x p 2 \\
E x p & \rightarrow E x p 2 \\
E x p 2 & \rightarrow E x p 2 * E x p 3 \\
E x p 2 & \rightarrow E x p 2 / E x p 3 \\
E x p 2 & \rightarrow E x p 3 \\
E x p 3 & \rightarrow \text { num } \\
E x p 3 & \rightarrow(E x p)
\end{aligned}
$$

Non-context free languages

■ Some syntactic constructs from typical programming languages cannot be specified with CFG

- Example 1: ensuring that a variable is declared before its use
- $L_{1}=\left\{w c w \mid w\right.$ is in $\left.(a \mid b)^{*}\right\}$ is not context-free
- In C and Java, there is one token for all identifiers
- Example 2: checking that a function is called with the right number of arguments
- $L_{2}=\left\{a^{n} b^{m} c^{n} d^{m} \mid n \geq 1\right.$ and $\left.m \geq 1\right\}$ is not context-free
- In C, the grammar does not count the number of function arguments

stmt	\rightarrow	id (expr_list)
expr_list	\rightarrow expr_list, expr	
	\mid	expr

■ These constructs are typically dealt with during semantic analysis

Backus-Naur Form

■ A text format for describing context-free languages
■ We ask you to provide the source grammar for your project in this format

- Example:

```
<expression> ::= <term> | <term> "+" <expression>
<term> ::= <factor> | <factor> "*" <term>
<factor> ::= <constant> | <variable> | "(" <expression> ")"
<variable> ::= "x" | "y" | "z"
<constant> ::= <digit> | <digit> <constant>
<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
```

■ More information:
http://en.wikipedia.org/wiki/Backus-Naur_form

Outline

1. Introduction

2. Context-free grammar
3. Top-down parsing
4. Bottom-up parsing
5. Conclusion and some practical considerations

Syntax analysis

- Goals:
- Checking that a program is accepted by the context-free grammar
- Building the parse tree
- Reporting syntax errors
- Two ways:
- Top-down: from the start symbol to the word
- Bottom-up: from the word to the start symbol

Top-down and bottom-up: example

Grammar:

$$
\begin{aligned}
& S \rightarrow A B \\
& A \rightarrow a A \mid \epsilon \\
& B \rightarrow b \mid b B
\end{aligned}
$$

Top-down parsing of $a a^{2} b$ S

$A B$	$S \rightarrow A B$
$a A B$	$A \rightarrow a A$
$a a A B$	$A \rightarrow a A$
$a a a A B$	$A \rightarrow a A$
aaa ϵB	$A \rightarrow \epsilon$
aaab	$B \rightarrow b$

Bottom-up parsing of $a a a b$

aaab	
aaa b	(insert ϵ)
aaaAb	$A \rightarrow \epsilon$
$a a A b$	$A \rightarrow a A$
$a A b$	$A \rightarrow a A$
$A b$	$A \rightarrow a A$
$A B$	$B \rightarrow b$
S	$S \rightarrow A B$

aaa ϵ (insert ϵ)
$a a a A b \quad A \rightarrow \epsilon$
$a a A b \quad A \rightarrow a A$
$a A b \quad A \rightarrow a A$
$A b \quad A \rightarrow a A$
$A B \quad B \rightarrow b$
$S \quad S \rightarrow A B$

A naive top-down parser

- A very naive parsing algorithm:
- Generate all possible parse trees until you get one that matches your input
- To generate all parse trees:

1. Start with the root of the parse tree (the start symbol of the grammar)
2. Choose a non-terminal A at one leaf of the current parse tree
3. Choose a production having that non-terminal as LHS, eg., $A \rightarrow X_{1} X_{2} \ldots X_{k}$
4. Expand the tree by making $X_{1}, X_{2}, \ldots, X_{k}$, the children of A.
5. Repeat at step 2 until all leaves are terminals
6. Repeat the whole procedure by changing the productions chosen at step 3
(Note: the choice of the non-terminal in Step 2 is irrevelant for a context-free grammar)

- This algorithm is very inefficient, does not always terminate, etc.

Top-down parsing with backtracking

- Modifications of the previous algorithm:

1. Depth-first development of the parse tree (corresponding to a left-most derivation)
2. Process the terminals in the RHS during the development of the tree, checking that they match the input
3. If they don't at some step, stop expansion and restart at the previous non-terminal with another production rules (backtracking)
■ Depth-first can be implemented by storing the unprocessed symbols on a stack

- Because of the left-most derivation, the inputs can be processed from left to right

Backtracking example

	Stack	Inputs	Action
	S	$b c d$	Try $S \rightarrow b a b$
	$b a b$	$b c d$	match b
$S \rightarrow b a b$	$a b$	$c d$	dead-end, backtrack
$S \rightarrow b A$	S	$b c d$	Try $S \rightarrow b A$
$A \rightarrow d$	$b A$	$b c d$	match b
$A \rightarrow c A$	A	$c d$	Try $A \rightarrow d$
	d	$c d$	dead-end, backtrack
	A	$c d$	Try $A \rightarrow c A$
	$c A$	$c d$	match c
	A	d	Try $A \rightarrow d$
	d	d	match d
			Success!

Top-down parsing with backtracking

- General algorithm (to match a word w):

```
Create a stack with the start symbol
    \(X=\operatorname{POP}()\)
    \(a=\operatorname{GETNEXtTOKEN}()\)
    while (True)
        if ( \(X\) is a nonterminal)
            Pick next rule to expand \(X \rightarrow Y_{1} Y_{2} \ldots Y_{k}\)
            Push \(Y_{k}, Y_{k-1}, \ldots, Y_{1}\) on the stack
            \(X=\operatorname{POP}()\)
    elseif \((X==\$\) and \(a==\$)\)
            Accept the input
        elseif ( \(X==a\) )
            \(a=\operatorname{Getnexttoken}()\)
            \(X=\operatorname{POP}()\)
        else
            Backtrack
```

■ Ok for small grammars but still untractable and very slow for large grammars

- Worst-case exponential time in case of syntax error

Another example

	Stack	Inputs	Action
$S \rightarrow a S b T$	S	accbbadbc	Try $S \rightarrow a S b T$
$S \rightarrow a S b T$	aSbT	accbbadbc	match a
$S \rightarrow c T$	SbT	accbbadbc	Try S \rightarrow aSbT
$S \rightarrow d$	aSbTbT	accbbadbc	match a
$T \rightarrow a T$	SbTbT	ccbbadbc	Try $S \rightarrow c T$
$T \rightarrow$ aT	cTbTbT	ccbbadbc	match c
$T \rightarrow b S$	TbTbT	cbbadbc	Try $T \rightarrow c$
$T \rightarrow c$	cbTbT	cbbadbc	match cb
$T \rightarrow C$	TbT	badbc	Try $T \rightarrow b S$
	bSbT	badbc	match b
	SbT	$a d b c$	Try S \rightarrow aSbT
	$a S b T$	$a d b c$	match a
	\ldots	\ldots	...
	c	c	match c
$w=a c c b b a d b c$			Success!

Predictive parsing

- Predictive parser:
- In the previous example, the production rule to apply can be predicted based solely on the next input symbol and the current nonterminal
- Much faster than backtracking but this trick works only for some specific grammars
■ Grammars for which top-down predictive parsing is possible by looking at the next symbol are called $L L(1)$ grammars:
- L: left-to-right scan of the tokens
- L: leftmost derivation
- (1): One token of lookahead

■ Predicted rules are stored in a parsing table M :

- $M[X, a]$ stores the rule to apply when the nonterminal X is on the stack and the next input terminal is a

Example: parse table

$$
\begin{aligned}
& S \rightarrow E \$ \\
& E \rightarrow \text { int } \\
& E \rightarrow(E \text { Op } E) \\
& O p \rightarrow+ \\
& O p \rightarrow *
\end{aligned}
$$

	int	$($	$)$	+	$*$	$\$$
S	E	E\$				
E	int	(E OPE)				
Op				+	$*$	

(Keith Schwarz)

Example: successfull parsing

1. $\mathrm{S} \rightarrow \mathrm{E}$ \$
2. $\mathrm{E} \rightarrow$ int
3. $\mathrm{E} \rightarrow$ (E Op E)
4. Op $\rightarrow+$
5. Op \rightarrow -

int	1	$)$	+	$*$	$\$$	
S	1	1				
E	2	3				
Op				4	5	

S	(int + (int * int)) \$
E\$	(int + (int * int)) \$
(E Op E) \$	(int + (int * int)) \$
E Op E) \$	int + (int * int)) \$
int Op E) \$	int + (int * int)) \$
Op E) \$	+ (int * int)) \$
+ E) \$	+ (int * int)) \$
E) \$	(int * int)) \$
(E Op E)) \$	(int * int)) \$
E Op E)) \$	int * int)) \$
int Op E)) \$	int * int))\$
Op E)) \$	* int)) \$
* E)) \$	* int))\$
E)) \$	int)) \$
int)) \$	int)) \$
)) \$)) \$
) \$) \$
\$	\$

(Keith Schwarz)

Example: erroneous parsing

1. $S \rightarrow E \$$
2. $\mathrm{E} \rightarrow$ int
3. $\mathrm{E} \rightarrow(\mathrm{EOp} \mathrm{E})$
4. Op $\rightarrow+$
5. Op $\rightarrow-$

S	(int (int)) \$
E\$	(int (int))\$
E Op E) \$	(int (int))\$
E Op E) \$	int (int))\$
int Op E) \$	int (int)) \$
Op E) \$	(int))\$

	int	$($	$)$	+	$*$	$\$$
S	1	1				
E	2	3				
Op				4	5	

(Keith Schwarz)

Table-driven predictive parser

(Dragonbook)

Table-driven predictive parser

```
Create a stack with the start symbol
\(X=\operatorname{POP}()\)
\(a=\operatorname{GETNEXtTOKEN}()\)
while (True)
    if \((X\) is a nonterminal)
        if \((M[X, a]==N U L L)\)
            Error
        elseif \(\left(M[X, a]==X \rightarrow Y_{1} Y_{2} \ldots Y_{k}\right)\)
            Push \(Y_{k}, Y_{k-1}, \ldots, Y_{1}\) on the stack
            \(X=\operatorname{POP}()\)
    elseif \((X==\$\) and \(a==\$)\)
        Accept the input
    elseif \((X==a)\)
        \(a=\operatorname{GETNEXtTOKEN}()\)
    \(X=\operatorname{POP}()\)
    else
    Error
```


LL(1) grammars and parsing

Three questions we need to address:
■ How to build the table for a given grammar?

- How to know if a grammar is $L L(1)$?

■ How to change a grammar to make it $L L(1)$?

Building the table

- It is useful to define three functions
(with A a nonterminal and α any sequence of grammar symbols):
- $\operatorname{Nullable(~} \alpha$) is true if $\alpha \stackrel{*}{\Rightarrow} \epsilon$
- First (α) returns the set of terminals c such that $\alpha \stackrel{*}{\Rightarrow} c \gamma$ for some (possibly empty) sequence γ of grammar symbols
- Follow (A) returns the set of terminals a such that $S \stackrel{*}{\Rightarrow} \alpha A a \beta$, where α and β are (possibly empty) sequences of grammar symbols

$$
(c \in \operatorname{First}(A) \text { and } a \in \operatorname{Follow}(A))
$$

Building the table from First, Follow, and Nullable

To construct the table:

- Start with the empty table
- For each production $A \rightarrow \alpha$:
- add $A \rightarrow \alpha$ to $M[A, a]$ for each terminal a in First (α)
- If Nullable (α), add $A \rightarrow \alpha$ to $M[A, a]$ for each a in $\operatorname{Follow}(A)$

First rule is obvious. Illustration of the second rule:

$$
\begin{aligned}
S \rightarrow \text { Ab } & \text { Nullable }(A)
\end{aligned}=\text { True } \quad \text { First }(A)=\{c\} \quad M[A, b]=A \rightarrow \epsilon
$$

LL(1) grammars

- Three situations:
- $M[A, a]$ is empty: no production is appropriate. We can not parse the sentence and have to report a syntax error
- $M[A, a]$ contains one entry: perfect!
- $M[A, a]$ contains two entries: the grammar is not appropriate for predictive parsing (with one token lookahead)
■ Definition: A grammar is $L L(1)$ if its parsing table contains at most one entry in each cell or, equivalently, if for all production pairs $A \rightarrow \alpha \mid \beta$
- $\operatorname{First}(\alpha) \cap \operatorname{First}(\beta)=\emptyset$,
- Nullable (α) and $\operatorname{Nullable(~} \beta$) are not both true,
- if $\operatorname{Nullable}(\beta)$, then $\operatorname{First}(\alpha) \cap \operatorname{Follow}(A)=\emptyset$
- Example of a non $\operatorname{LL}(1)$ grammar:

$$
\begin{aligned}
& S \rightarrow A b \\
& A \rightarrow b \\
& A \rightarrow \epsilon
\end{aligned}
$$

Computing Nullable

Algorithm to compute Nullable for all grammar symbols
Initialize Nullable to False.
repeat
for each production $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$
if $Y_{1} \ldots Y_{k}$ are all nullable (or if $k=0$)
Nullable $(X)=$ True
until Nullable did not change in this iteration.
Algorithm to compute Nullable for any string $\alpha=X_{1} X_{2} \ldots X_{k}$:
if ($X_{1} \ldots X_{k}$ are all nullable)
Nullable $(\alpha)=$ True
else
Nullable $(\alpha)=$ False

Computing First

Algorithm to compute First for all grammar symbols
Initialize First to empty sets. for each terminal Z

$$
\operatorname{First}(Z)=\{Z\}
$$

repeat
for each production $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$

$$
\begin{aligned}
& \text { for } i=1 \text { to } k \\
& \text { if } \left.Y_{1} \ldots Y_{i-1} \text { are all nullable (or } i=1\right) \\
& \quad \operatorname{First}(X)=\operatorname{First}(X) \cup \operatorname{First}\left(Y_{i}\right)
\end{aligned}
$$

until First did not change in this iteration.
Algorithm to compute First for any string $\alpha=X_{1} X_{2} \ldots X_{k}$:

```
Initialize First (\alpha)=\emptyset
for i=1 to k
```



```
        First(\alpha)=First (\alpha)\cupFirst(Xi)
```


Computing Follow

To compute Follow for all nonterminal symbols
Initialize Follow to empty sets.
repeat
for each production $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$ for $i=1$ to k, for $j=i+1$ to k
if $Y_{i+1} \ldots Y_{k}$ are all nullable (or $i=k$)
Follow $\left(Y_{i}\right)=$ Follow $\left(Y_{i}\right) \cup$ Follow (X)
if $Y_{i+1} \ldots Y_{j-1}$ are all nullable (or $i+1=j$)
Follow $\left(Y_{i}\right)=\operatorname{Follow}\left(Y_{i}\right) \cup \operatorname{First}\left(Y_{j}\right)$
until Follow did not change in this iteration.

Example

Compute the parsing table for the following grammar:

$$
\begin{aligned}
S & \rightarrow E \$ \\
E & \rightarrow T E^{\prime} \\
E^{\prime} & \rightarrow+T E^{\prime} \\
E^{\prime} & \rightarrow-T E^{\prime} \\
E^{\prime} & \rightarrow \epsilon \\
T & \rightarrow F T^{\prime} \\
T^{\prime} & \rightarrow * F T^{\prime} \\
T^{\prime} & \rightarrow / F T^{\prime} \\
T^{\prime} & \rightarrow \epsilon \\
F & \rightarrow \text { id } \\
F & \rightarrow \text { num } \\
F & \rightarrow(E)
\end{aligned}
$$

Example

Nonterminals	Nullable	First	Follow
S	False	$\{($, id, num $\}$	\emptyset
E	False	$\{($, id, num $\}$	$), \$\}$
E^{\prime}	True	$\{+,-\}$	$), \$\}$
T	False	$\{($, id, num $\}$	$),+,-, \$\}$
T,	True	$\{*, /\}$	$),+,-, \$\}$
F	False	$\{($, id, num $\}$	$), *, /,+,-, \$\}$

$L L(1)$ parsing summary so far

Construction of a $L L(1)$ parser from a CFG grammar
■ Eliminate ambiguity

- Add an extra start production $S^{\prime} \rightarrow S \$$ to the grammar
- Calculate First for every production and Follow for every nonterminal
- Calculate the parsing table

■ Check that the grammar is $L L(1)$

Next course:

- Transformations of a grammar to make it $\operatorname{LL}(1)$
- Recursive implementation of the predictive parser

■ Bottom-up parsing techniques

Transforming a grammar for $L L(1)$ parsing

■ Ambiguous grammars are not $L L(1)$ but unambiguous grammars are not necessarily $L L(1)$
■ Having a non- $\operatorname{CL}(1)$ unambiguous grammar for a language does not mean that this language is not $L L(1)$.

- But there are languages for which there exist unambiguous context-free grammars but no $\operatorname{LL}(1)$ grammar.

■ We will see two grammar transformations that improve the chance to get a $L L(1)$ grammar:

- Elimination of left-recursion
- Left-factorization

Left-recursion

- The following expression grammar is unambiguous but it is not $L L(1)$:

$$
\begin{aligned}
E x p & \rightarrow E x p+E x p 2 \\
E x p & \rightarrow E x p-E x p 2 \\
E x p & \rightarrow E x p 2 \\
E x p 2 & \rightarrow E x p 2 * E x p 3 \\
E x p 2 & \rightarrow E x p 2 / E x p 3 \\
E x p 2 & \rightarrow E x p 3 \\
E x p 3 & \rightarrow \text { num } \\
E x p 3 & \rightarrow \text { Exp })
\end{aligned}
$$

- Indeed, First (α) is the same for all RHS α of the productions for Exp et Exp2
- This is a consequence of left-recursion.

Left-recursion

- Recursive productions are productions defined in terms of themselves. Examples: $A \rightarrow A b$ ou $A \rightarrow b A$.
■ When the recursive nonterminal is at the left (resp. right), the production is said to be left-recursive (resp. right-recursive).
■ Left-recursive productions can be rewritten with right-recursive productions
- Example:

$$
\begin{array}{cll}
N & \rightarrow & N \alpha_{1} \\
& \vdots & \\
N & \rightarrow & N \alpha_{m} \\
N & \rightarrow & \beta_{1} \\
\vdots & \\
N & \rightarrow & \beta_{n}
\end{array}
$$

$$
\Leftrightarrow
$$

$$
\begin{aligned}
& N \rightarrow \\
& \beta_{1} N^{\prime} \\
& \vdots \\
& N \rightarrow \\
& \beta_{n} N^{\prime} \\
& N^{\prime} \rightarrow \\
& \alpha_{1} N^{\prime} \\
& \vdots \\
& N^{\prime} \rightarrow \\
& N^{\prime} \rightarrow \epsilon
\end{aligned}
$$

Right-recursive expression grammar

$E x p$	$\rightarrow E x p+E x p 2$
$E x p$	$\rightarrow E x p-E x p 2$
$E x p$	$\rightarrow E x p 2$
$E x p 2$	$\rightarrow E x p 2 * E x p 3$
$E x p 2$	$\rightarrow E x p 2 / E x p 3$
$E x p 2$	$\rightarrow E x p 3$
$E x p 3$	\rightarrow num
$E x p 3$	$\rightarrow(E x p)$

Exp	\rightarrow	Exp2Exp ${ }^{\prime}$
Exp ${ }^{\prime}$	\rightarrow	$+E x p 2 E x p^{\prime}$
$E x p^{\prime}$	\rightarrow	- Exp $2 E x p^{\prime}$
Exp ${ }^{\prime}$	\rightarrow	ϵ
Exp2	\rightarrow	Exp3Exp2'
Exp2'	\rightarrow	*Exp3Exp2
Exp2'	\rightarrow	/ Exp3Exp2
Exp2'	\rightarrow	ϵ
Exp3	\rightarrow	num
Exp3	\rightarrow	(Exp)

Left-factorisation

- The RHS of these two productions have the same First set.

> Stat \rightarrow if Exp then Stat else Stat
> Stat \rightarrow if Exp then Stat

- The problem can be solved by left factorising the grammar:

$$
\begin{aligned}
\text { Stat } & \rightarrow \text { if Exp then Stat ElseStat } \\
\text { ElseStat } & \rightarrow \text { else Stat } \\
\text { ElseStat } & \rightarrow \epsilon
\end{aligned}
$$

■ Note

- The resulting grammar is ambiguous and the parsing table will contain two rules for M[E/seStat, else]
(because else \in Follow(ElseStat) and else \in First(else Stat))
- Ambiguity can be solved in this case by letting $M[$ ElseStat, else $]=\{$ ElseStat \rightarrow else Stat $\}$.

Hidden left-factors and hidden left recursion

■ Sometimes, left-factors or left recursion are hidden

- Examples:
- The following grammar:

$$
\begin{aligned}
& A \rightarrow d a \mid a c B \\
& B \rightarrow a b B|d a A| A f
\end{aligned}
$$

has two overlapping productions: $B \rightarrow d a A$ and $B \stackrel{*}{\Rightarrow} d a f$.

- The following grammar:

$$
\begin{array}{lll}
S & \rightarrow & T u \mid w x \\
T & \rightarrow & S q \mid v v S
\end{array}
$$

has left recursion on $T(T \stackrel{*}{\Rightarrow} T u q)$
■ Solution: expand the production rules by substitution to make left-recursion or left factors visible and then eliminate them

Summary

Construction of a $L L(1)$ parser from a CFG grammar
■ Eliminate ambiguity

- Eliminate left recursion
- left factorization
- Add an extra start production $S^{\prime} \rightarrow S \$$ to the grammar
- Calculate First for every production and Follow for every nonterminal
- Calculate the parsing table
- Check that the grammar is $L L(1)$

Recursive implementation

■ From the parsing table, it is easy to implement a predictive parser recursively (with one function per nonterminal)

T^{\prime}	\rightarrow	$T \$$		
T	\rightarrow	R		
T	\rightarrow	$a T c$		
R	\rightarrow	ϵ		
R	\rightarrow	$b R$		
	a	b	c	$\$$
T^{\prime}	$T^{\prime} \rightarrow T \$$	$T^{\prime} \rightarrow T \$$		$T^{\prime} \rightarrow T \$$
T	$T \rightarrow a T c$	$T \rightarrow R$	$T \rightarrow R$	$T \rightarrow R$
R		$R \rightarrow b R$	$R \rightarrow \epsilon$	$R \rightarrow \epsilon$

```
function parseT'() =
    if next = 'a' or next = 'b' or next = '$' then
        parseT() ; match('$')
    else reportError()
function parseT() =
    if next = 'b' or next = 'c' or next = '$' then
        parseR()
    else if next = 'a' then
        match('a') ; parseT() ; match('c')
    else reportError()
function parseR() =
    if next = 'c' or next = '$' then
        (* do nothing *)
    else if next = 'b' then
        match('b') ; parseR()
    else reportError()
```

(Mogensen)

