INFO2050 - Advanced computer programming
 Exercise session 1: Pseudo-code and complexity

Jean-Michel Begon

September 2014

Exercice 1

What is this function doing?
$\operatorname{Mystery}(A)$
if A.length <2
return True
else
if $A[1]==A[$ A.length $]$
return $\operatorname{Mystery}(A[2 .$. A.length -1$])$
else
return False

Exercise 2

(a) Write the pseudo-code of an iterative function which determines the minimum value of an array. Write the same function in a recursive way.
(b) Write the pseudo-code of a recursive function which computes the following recurrence:

$$
\begin{gathered}
T(i, j)=T(i-1, j)+T(i, j-1) \\
T(i, 1)=1 \quad \forall i>0 \\
T(1, j)=1 \quad \forall j>0
\end{gathered}
$$

Exercise 3

(a) Algorithm A requires $10 n^{3}$ operations to solve a problem. Algorithm B solves it in $1000 n^{2}$ operations. What is the fastest algorithm.
(b) Algorithm A requires $32 n \log _{2} n$ operations to solve a problem. Algorithm B solves it in $3 n^{2}$ operations. What is the fastest algorithm.

Exercise 4

Let an algorithm whose execution time for $N=1000,2000,3000$ and 4000 be $5 s, 20 s, 45 s$ et $80 s$ respectively. Give an estimation of the required time for $N=5000$.

Exercise 5

(a) Show that $2 n+100$ is $\Theta(n)$.
(b) Show that $5 n^{2}+500 n+5000$ is $\Theta\left(n^{2}\right)$.
(c) Show that 2^{n+1} is $\Theta\left(2^{n}\right)$.
(d) Explain why the sentence "The execution time of algorithm A is at least $O\left(n^{2}\right)$ " does not make sense.
(e) Show that the execution time of an algorithm is $\Theta(g(n))$ if and only if the execution time is both $O(g(n))$ and $\Omega(g(n))$.
(f) Give an example of a function $f(n)$ which is neither $O(n)$ nor $\Omega(n)$.

Exercise 6

Sort these function by increasing order of complexity (regarding the $\Theta(),. O($.$) and \Omega($.$) operators).$

$n \log _{2} n$	$\frac{4}{n}$	\sqrt{n}	$2^{2^{n}}$
$\log _{2} \log _{2} n$	$8 n^{3}$	$8^{\ln n}$	$\frac{n}{2+n}$
$\log _{2} n^{7}$	$5^{\ln _{\log _{2} n}}$	$\left(\log _{2} n\right)^{3}$	$\frac{n}{\log _{2}(2+n)}$

Exercise 7

For each of the following pseudo-codes, determine what is the algorithm doing and what is the asymptotic complexity in terms of n. (Be precise in the notations).

Code1 (n)

```
limit \(=n * n\)
sum \(=0\)
for \(i=1\) to limit
    sum \(=\) sum +1
return sum
```

```
Code2(n)
\(i=1\)
limit \(=n * n * n\)
sum \(=0\)
while \(i<\) limit
    sum \(=\) sum +1
    \(i=i * 2\)
return sum
```

```
Code3( \(a, b, c, n\) )
for \(i=1\) to \(n\)
    for \(j=1\) to \(n\)
        \(a[i][j]=0\)
        for \(k=1\) to \(n\)
            \(a[i][j]=a[i][j]+b[i][k] * c[k][j]\)
```


Exercise 8

Let A be an array of n values sorted in ascending order. Our purpose is to determine if a value b is present in A.
(a) Write a pseudo-code of a brute-force algorithm for finding b. What is its complexity in the best/average/worst case ?
(b) Give an dichotomic algorithm. What is its best/average/worst case complexity ?

Exercise 9

Let A be an array of N integers where each integer in the $1 . . N$ interval appears exactly once except for an integer appearing twice and one missing. Give an linear-time algorithm for finding the missing integer which takes a memory space of at most $O(1)$.

