INFO2050 - Advanced computer programming

Exercise session 2: Recurrence and summation

Jean-Michel Begon

October 2014

Exercise 1

Find an analytic solution for:
(a) $\sum_{k=1}^{\infty}(2 k+1) x^{2 k}($ with $|x|<1)$;
(b) $\sum_{i=x}^{y}(2 i+1)$;
(c) $\sum_{i=0}^{\infty} \sum_{j=1}^{n}\left(\frac{j}{j+2}\right)^{i}$.
(d) $\sum_{k=0}^{n} k^{2} 4^{k}$ (tips: use the perturbation method)

Exercise 2

Find an analytic solution for:

$$
\begin{gathered}
T(0)=2 \\
T(n)=\frac{1}{n} \sum_{p=0}^{n-1} T(n-1-p) T(p) \quad \forall n>0
\end{gathered}
$$

Exercise 3

Find an analytic solution for:

$$
\begin{gathered}
T(1)=1 \\
n T(n)=(n-2) T(n-1)+2 \quad \forall n>1
\end{gathered}
$$

Exercise 4

Find an analytic solution for:

$$
\begin{gathered}
T(1)=13 \\
T(n)=2 T(n / 8)+21 n \quad \forall n>1
\end{gathered}
$$

Exercise 5

Consider the following recurrence (where $n>1$ is a power of 3):

$$
\begin{gathered}
T(1)=0 \\
T(n)=6 T(n / 3)+2 n
\end{gathered}
$$

(a) Without solving the recurrence, show that $T(n) \in O\left(n^{2}\right)$ (tips: refer to the master theorem).
(b) Find an analytic solution.

Exercise 6

For each of the following pseudo-codes, determine what is doing the algorithm and its asymptotic complexity (be precise with the notations).

```
Code1(n)
    if n\leq1
        return n
    else
4 return Code1(n-1) + CodE1(n-1)
```

Code2(n)
if $n==0$
return ""
else
$t m p=\operatorname{CoDE} 2(n / 2)$
if $n \% 2==0$
return tmp + tmp
else
return tmp + tmp + " x "
$\operatorname{Code} 3(A, k)$
1 for $i=1$ to A.length
$2 \quad$ if $A[i]==k$
3 return i
4 return -1

Bonus

Bonus 1

In a machine learning applicaiton, we would like to extract contiguous substrings from a reference string A of length n. How many substrings of length k, at most k and between lengths k_{1} and k_{2} are there ? How many in total ?

Bonus 2

The first Euler project (https://projecteuler.net) does not require a computer:
"If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000."

