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The goal of this project is to help you better understand the important notions of bias and
variance. The first part of the project is purely theoretical, while the second part requires to
perform experiments with scikit-learn. Each project should be executed by groups of two students.
We expect from each group to do:
• A brief report (in PDF format and of maximum 10 pages) collecting the answers to the
different questions. Your report should include all necessary plots.

• The python scripts you implemented to answer the questions of the second part.
The report and the scripts should be submitted as a tar.gz file on Montefiore’s submission plateform
(http://submit.run.montefiore.ulg.ac.be) before November 22, 23:59 GMT+2. You must
use you sXXXXXX ids as group name.

1 Theoretical questions
1.1 Bayes model and residual error in classification
Let us consider a classification problem where each example is described by two input features
x1 and x2, and is associated to a class y ∈ {0, 1}. To draw an example from the distribution
p(x1, x2, y), we proceed as follows:

• A class y is drawn uniformly at random from {0, 1}.

• x1 and x2 are then computed as follows:

x1 = r cosα
x2 = r sinα,

where α ∼ U(0, 2π) and r’s distribution depends on y as follows:

– If y = 0, r ∼ Exp(1.5)
– If y = 1, r ∼ Exp(0.5)

where Exp(λ) denotes an exponential distribution of parameter λ (probability density func-
tion is λexp(−λr)).

Figure 1 shows a sample of 200 examples drawn according to this procedure. For this procedure:
(a) Derive an analytical formulation of the Bayes model hB(x1, x2) corresponding to the zero-one

error loss. Justify your answer.

(b) Compute the generalization error of the Bayes model, ie. Ex1,x2,y{1(y 6= hB(x1, x2))}. Justify
your answer.
NB: If the solution to these questions involves the computation of integrals or intersections

between functions, you can compute them numerically using any software you want.
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Figure 1: A sample of 200 points drawn from the distribution of Section 1.1. Red points correspond
to y = 1 and green points to y = 0.
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1.2 Bias and variance of the kNN algorithm
Let us consider a unidimensional regression problem y = f(x) + ε where ε ∼ N (0, σ2) and let
LS = {(x1, y1), . . . , (xN , yN )} denote the learning sample (of fixed size N). To simplify the
analysis, we further assume that the input values xi of the N learning sample examples are fixed
in advance, i.e., only their outputs yi are random.

(a) Show that the generalization error of the k Nearest Neighbours algorithm at some point x can
be decomposed as follows:

ELS{Ey|x{(y − ŷ(x;LS, k))2}} = σ2 +
[
f(x)− 1

k

k∑
l=1

f(x(l))
]2

+ σ2

k
,

where ŷ(x;LS, k) denotes the prediction of the kNN method at point x for a learning sample
LS (of size N), x(l) denotes the lth nearest neighbours of x in LS and k is the number of
neighbours.

(b) Using question (a), discuss the effect of the number of neighbours k on each term of the
bias-variance decomposition.

2 Empirical analysis
Let us consider a regression problem (see Figure 2) where each sample (x, y) is generated as follows:

• The input x is drawn uniformly in [−10, 10]

• The output y is given by
y = x (sin (x) + cos (x))2 + ε,

where ε ∼ N (0, 0.5) is a noise variable.
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Figure 2: Illustration of the relation between x and y.

(a) Describe an experimental protocol to estimate the residual error, the squared bias, and the
variance at a given point x0 and for a given supervised learning algorithm.
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(b) Using this protocol, estimate and plot the residual error, the squared bias, the variance, and
the expected error as a function of x for one linear and one non-linear regression method of
your choice. Comment your results.

(c) Adapt the protocol of question (a) to estimate the mean values of the previous quantities over
the input space.

(d) Use this protocol to study the mean values of the squared error, the residual error, the squared
bias and the variance for the same algorithms as in question (b) as a function of:

• the size of the learning set;
• the model complexity;
• the standard deviation of the noise ε;

Explain your observations and support your conclusions with the appropriate plots.
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