
ELEN0062 - Introduction to machine learning
First assignment: Feedback

Jean-Michel Begon and Antonio Sutera

University of Liege

November 21, 2018

1 / 23

Outline

Decision tree

k-Nearest neighbors

Linear discriminant analysis

LDA implementation

Presentation and style

2 / 23

Decision tree — Boundaries

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

Decision tree: depth=1 (acc=0.74)

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

Decision tree: depth=2 (acc=0.83)

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

Decision tree: depth=8 (acc=0.83)

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

Decision tree: depth=None (acc=0.78)

Figure: Decision tree boundary for several depths (dataset 2)
3 / 23

Decision tree — Comments

1. The DT models partition the space with axis-aligned cuts
I because it splits the dataset by thresholding one of the

features.
2. Increasing the depth sub-partition the space (exponentially)

I because each node of depth d − 1 is split (unless it is pure).
3. We can see underfitting for depth 1 and 2

I the boundary is too simple to account for the data.
4. We can see overfitting from depth 8 on

I too many small regions too specific for the data.

5. The model is confident because the training set is perfectly
classified and the model predicts for a zone the proportion of
training objects that fell into that zone.

4 / 23

k-Nearest neighbors — Boundaries

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

k-NN: n_neighbors=1 (acc=0.82)

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

k-NN: n_neighbors=5 (acc=0.83)

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

k-NN: n_neighbors=25 (acc=0.86)

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

k-NN: n_neighbors=125 (acc=0.86)

Figure: k-NN boundary for several depths (dataset 2)
5 / 23

k-Nearest neighbors — Boundaries (cont.)

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

k-NN: n_neighbors=625 (acc=0.83)

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

k-NN: n_neighbors=1200 (acc=0.48)

Figure: k-NN boundary for several depths (dataset 2)

6 / 23

k-Nearest neighbors — Comments
The decision for k = 1 depicts overfitting: small, arbitrary zones in the
middle of the cloud that are only relevant for the training set. On the top
part, the red zone seems unatural. The bottom, quadratic, part feels
right, though.

We can observe a smoothing of the zones when increasing the number of
neighbors and disappearance of the small island. When k = 5+, there is
no more overfitting: the decision boundary is quite reasonable. We see a
quadratic decision boundary at the bottom. Interestingly, there is a zone
of less confidence on the top (perpendicular to the ellipse).

By k = 625, every point has a neighborhood of half the dataset. Except
for points which are on the far off, there is a big ambiguity. Also, the
decision boundary is almost linear; we are seeing underfitting.

When k = 1200, we see encompass all the training set, wherever we are.
Therefore, the prediction is spatially uniform. The actual class that is
predicted is only due to the random splitting of the data.

Optimal number should be between k = 5 and k = 125.
7 / 23

Linear discriminant analysis
Starting from the class density functions:

fk(x) =
1

(2π)p/2|Σk |1/2
e−

1
2 (x−µk)T Σ−1k (x−µk) (1)

where x ∈ Rp is the feature vector and µk and Σk are respectively
the mean and covariance matrix corresponding to class k .

We need to find the class

arg max
k

P(y = k|x) =
fk(x)πk∑K
l=1 fl(x)πl

(2)

= fk(x)πk (3)

where πk = P(y = k) (k = 1, . . . ,K).

(2)→ (3) the denominator is constant wrt to x for all k.

8 / 23

Linear discriminant analysis — Demonstration

γk(x) , log (fk(x)πk) (4)

= Ck −
1
2

(x − µk)T Σ−1
k (x − µk) + log πk (5)

= Ck −
1
2
xTΣ−1

k x +
1
2
µT
k Σ−1

k x +
1
2
xTΣ−1

k µk −
1
2
µT
k Σ−1

k µk + log πk (6)

= Dk(x) +
1
2
(
µT
k Σ−1

k x + xTΣ−1
k µk

)
− 1

2
µT
k Σ−1

k µk + log πk (7)

= Dk(x) + µT
k Σ−1

k x − 1
2
µT
k Σ−1

k µk + log πk (8)

(4)→ (5) by definition of fk (x).

(5)→ (6) distribution.

(6)→ (7) posing Dk (x) = Ck − 1
2 xT Σ−1

k
x.

(7)→ (8) µT
k Σ−1

k
x = xT Σ−1

k
µk since Σ−1

k
is symmetric (since Σk is symmetric).

9 / 23

Linear discriminant analysis — Demonstration (cont.)
By homoscedasticity:

Σ−1
k = Σ−1

l = Σ−1, ∀k, l (9)
Ck = Cl = C , ∀k, l (10)

Dk(x) = Dl(x) = D(x) = C +−1
2
xTΣ−1x , ∀k, l (11)

γk(x) = D(x) + µT
k Σ−1x − 1

2
µT
k Σ−1µk + log πk (12)

Going back to the prediction of the class

arg max
k

γk(x) = arg max
k

(
D(x) + µT

k Σ−1x − 1
2
µT
k Σ−1µk + log πk

)
(13)

= arg max
k

(
µT
k Σ−1x − 1

2
µT
k Σ−1µk + log πk

)
(14)

= arg max
k

δk(x) (15)

(13)→ (14) since D(x) does not depend on the class and is content wrt x.

10 / 23

Linear discriminant analysis — Demonstration (cont.)

δk(x) is called the linear discriminant function of class k and is
linear:

δk(x) = µT
k Σ−1x − 1

2
µT
k Σ−1µk + log πk = αT

k x + βk (16)

In the binary case, the classification rule becomes{
class k , if δk(x) > δl(x) ⇐⇒ (αT

k − αT
l)x + (βk − βl) > 0

class l , otherwise
(17)

Binary linear.
Multi-class piecewise linear.

11 / 23

Linear discriminant analysis — Results

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

LDA (acc=0.90)

6 4 2 0 2 4
X_0

6

4

2

0

2

4

X_
1

LDA (acc=0.84)

Figure: LDA boundary for several depths (dataset 2)

Accuracy LDA kNN (k = 125)
Dataset 1 0.91± 0.01 0.91± 0.01
Dataset 2 0.85± 0.03 0.85± 0.01

Table: Accuracies for LDA and kNN

12 / 23

Linear discriminant analysis — Discussion

The discussion must encompass both optimality and accuracy.

In the case of dataset 1, LDA is optimal (basically same
demonstration).

In the case of dataset 2, the optimal decision boundary is quadratic
(cf. k-NN), however, the linear decision is working surprisingly well;
it is not because the assumptions are not met that the model is bad.

The difference in accuracies is not so much because of the
homoscedasticity, but rather because of the shape of the data
(bayes rate is lower in the second dataset).

13 / 23

LDA implementation

Penalty only if the code was not genuine or not generic
I Use of Scikit-learn implementation
I Only works for two input features
I Only works for binary classifications

But implementations could be improved:
I Efficiency
I Numerical stability

14 / 23

LDA implementation — Efficiency

δk(x) = µT
k Σ−1x − 1

2
µT
k Σ−1µk + log πk = αT

k x + βk (20)

I αk and βk can only be computed once (at training time).
I βk can be computed from αk :

βk = −1
2
αT
k µk + log πk (18)

I Everything can be stored together (avoid loops by using
NumPy vectorized operations):

δ(x) =

δ1(x)
...

δK (x)

 =

α
T
1
...
αT
K

 x +

β1
...
βK

 = AT x + b (19)

15 / 23

LDA implementation — Efficiency (cont.)

I There is no need to compute the actual posterior probabilities
to predict the class.

I There is no need to compute the actual posterior probabilities:

eδk (x)∑K
l=1 e

δl (x)
=

eγk (x)−D(x)∑K
l=1 e

γl (x)−D(x)
(21)

=
eD(x)

eD(x)

eγk (x)∑K
l=1 e

γl (x)
(22)

=
fk(x)πk∑K
l=1 fl(x)πl

= P(y = k |x) (23)

16 / 23

LDA implementation — Numerical stability

(
µTk Σ−1

)T
= Σ−1µk = αk (24)

⇐⇒ Σαk = µk (25)

Or more generally

ΣA = M (26)

We do not actually care for Σ−1, we only need A.

Solving the system ΣA = M directly is more stable numerically than
inverting the covariance matrix and multiplying by the mean vector.

17 / 23

LDA implementation — Putting it all together

1. Assess parameters P , M and Σ from data
2. Compute A by solving ΣA = M

3. Compute b from A, M and P

Σ is the covariance matrix of size
p × p.

P =

 log π1
...

log πK

is the log prior vector of size K × 1.

M =
[
µT

1 . . . µ
T
K

]
is the concatenation of the means
vector of size p × K .

A =
[
αT

1 . . . α
T
K

]
is the coefficient matrix of size
p × K .

b =

β1
...
βK

is the intercept vector of size p × 1.

18 / 23

LDA implementation — Putting it all together

Prediction
given

X =

x
T
1
...
xTn

compute

Ŷ =

δ(x1)T

...
δ(xn)T

 = XA⊕ bT

where P ⊕ d adds the row vector d to each row of matrix P .
Either take the maximum rowwise to get the class or normalize to
get the probabilities.

19 / 23

LDA implementation — Estimating the parameters

def fit(self, X, y):

...

uniques = np.unique(y)

n_classes = len(uniques)

n_samples , n_features = X.shape

Estimating parameters from the data

Prior: [n_classes]

priors = np.histogram(y, n_classes)[0] / n_samples

M [n_features , n_classes]

means = np.zeros((n_classes , n_features))

X_centered = X.copy()

for i in range(n_classes):

idx = y == i

means[:, i] = np.mean(X[idx], axis=0)

X_centered[idx] −= means[i]

20 / 23

LDA implementation — Estimating the model parameters

Sigma [n_features , n_features]

df = n_samples − n_classes
covariance = np.dot(X_centered.T, X_centered) / df

Computing the coefficients

Coefficients: A [n_features , n_classes]

self.coef_ = np.linalg.solve(covariance , means)

Intercept: b [n_classes]

self.intercept_ = −0.5 ∗ np.sum(self.coef_.T∗means,
axis=1)

+ np.log(priors)

return self

21 / 23

LDA implementation — Prediction

def predict_raw(self, X):

return np.dot(X, self.coef_) + self.intercept_

def predict(self, X):

return np.argmax(self.predict_raw(X), axis=1)

def predict_proba(self, X):

exp = np.exp(self.predict_raw(X))

for i in range(exp.shape[1]):

exp[:, i] = exp[:, i] / exp.sum(axis=1)

return exp

22 / 23

Presentation and style

Of content and style
Sometimes in academia:

grade =
content + style

2

Everywhere else:

grade =
√

content× style
Pay attention to both!

A few advices
I Do not put figures in appendix if you describe them in the text

(same goes for demonstration).
I Analyze is more than describe: show you have understood

(make connections with the relevant part of the theory).
I Make a proper bibliography and cite your sources.
I Do not copy paste: rephrase to show you have understood.
I Choose carefully how you represent data.

23 / 23

	Decision tree
	k-Nearest neighbors
	Linear discriminant analysis
	LDA implementation
	Presentation and style

