ELENO0062 - Introduction to machine learning
Project 1 - Classification algorithms

September 2019

The goal of this first assignment is to get accustomed to the basics of machine learning
and concepts such as under- and over-fitting. We ask you to write several Python 3 scripts
to answer the different questions below. One separate script is required for each of the three
questions. Make sure that your experiments are reproducible (e.g., by fixing manually random
seeds). Add a brief report (pdf format) giving your observations and conclusions. Answers
are expected to be concise.

The assignment must be carried out by group of two students and submitted as a tar.gz
file on Montefiore’s submission plateform (http://submit.montefiore.ulg.ac.be) before
October 20, 23:59 GMT+2.

Note that attention will be paid to how you present your results. Careful thoughts in
particular — but not limited to — should be given when it comes to plots.

Files

You are given several files, among which are data.py and plot.py. The first one generates
binary classification datasets with two real input variables. In the following, you will work
on two datasets generated by make_datal and make_data?2, respectively. You can generate
datasets of 2000 samples. The first 150 will be used as training set and the remaining ones
as testing set.

The second file contains a function which depicts the dataset together with the decision
boundary of a trained classifier. Use the test set when depicting the boundary to assess how
it generalizes.

The other files must be completed and archived together with the report.

1 Decision tree (dt.py)

In this section, we will be studying decision tree models (see the DecisionTreeClassifier
class from sklearn.tree). More specifically, we will observe how model complexity im-
pacts the classification boundary. To do so, we will build several decision tree models with
max_depth values of 1,2,4,8 and None (which corresponds to an unconstrained depth). An-
swer the following questions in your report.

1. For both datasets, observe how the decision boundary is affected by tree depth:

(a) illustrate and explain the decision boundary for each depth;



(b) discuss when the model is clearly underfitting/overfitting and detail your evidence
for each claim;

(c¢) explain why the model seems more confident when the depth is unconstrained.

2. Report the average test set accuracies (over five generations of the dataset) along with
the standard deviations for each depth. Briefly comment on them.

3. Base on both the decision boundaries and the test accuracies, discuss the differences
between the two datasets.

2 K-nearest neighbors (knn.py)

In this section, we will be studying nearest neighbors models (see the KNeighborsClassifier
class from sklearn.neighbors). More specifically, we will observe how model complexity
impacts the classification boundary. To do so, we will build several nearest neighbor models
with n_neighbors values of 1,5, 10, 75,100 and 150. Answer the following questions in your
report.

1. For both datasets, observe how the decision boundary is affected by the number of
neighbors:
(a) illustrate the decision boundary for each value of n_neighbors.
(b) comment on the evolution of the decision boundary with respect to the number of

neighbors.

2. Use a ten-fold cross validation strategy to optimize the value of the n_neighbors pa-
rameter and obtain an unbiased estimate of the test accuracy for the second dataset.
(a) explain your methodology;
(b) report the score you obtain and the optimal value of n_neighbors. Do they

corroborate your decision boundary-based intuition? Justify your answer.

3. How do you think would fare this optimal value on the first dataset?

3 Naive Bayes classifier (naive_bayes.py)

In this section, we will be studying the Naive Bayes (NB) classifier model. NB is a probability-
based method which computes its predictions according to the posterior probability:

A

f(x) = argmax, Pr(ylzi,...,xp), (1)

where x = (21,...,2,) denotes the p input variables. To compute this posterior, the NB
classifier postulates that the input variables are conditionally independent given the output.
More formally,

P(X,D),Z) = P(XZD)) VZ € P({Xl, . 7Xi—17Xi+17 .. Xp}) (2)



where P(S) designate the power set of S. Given this hypothesis, the predictions of the NB
classifier can be obtained as

A

f(x) = argmax, Pr(y) [ ] Pr(z:ly) 3)
i=1

To compute (3), the prior (i.e. Pr(y)) and the likelihood (i.e. Pr(z;|y)) probabilities must
be estimated. For discrete variables — which is the case of ), one chooses the corresponding
ratio over the learning set. For continuous variables, an additional assumption must be made
with respect to the underlying distribution. One common choice is to presume Gaussianity:

xi — pi)*
2exp (—( 205) ) (4)

2mo} i

Pr(zily) =

where the population’s mean p; and variance 01-2
variance.

Despite its simplicity, this learning algorithm has proven itself quite useful in several areas
and in text-based problems in particular.

are estimated by the sample mean and

1. Show that (3) is equivalent to (1) under the NB independence assumption.

2. Implement your own NB estimator according to the above description and following
the scikit-learn convention (http://scikit-learn.org/dev/developers/). Sugges-
tion: Fill in the class whose template is given in naive_bayes.py.

3. Compute the testing set accuracy on both datasets and interpret the results.



