Computation Structures

Project 1
Perfect maze in S-assembly

October 03, 2017

General information

Deadline: October 29, 2017, 23:59.

Project must be done by teams of two students.

There will be a penalty for late submission.

Questions will no longer be answered 24 hours before the deadline.

English is strongly encouraged.

Contact: r.mormont@ulg.ac.be, Office 1.127 (B28).

1 Introduction

The goal of this project is to make you more familiar with the [-assembly language
by getting your hands dirty and writing code. More precisely, you will implement an
algorithm to draw a perfect maze in the machine’s dynamic memory.

1.1 Perfect maze

Let a maze M with R rows and C' columns be a set of cells ¢; with i € {0,..., (R x C)—1}.
Thus, if the rows are numbered 0 to R — 1 and the columns 0 to C' — 1, the cell in row
k and column [is cxxc41). A cell ¢; has a connection e(4, j) with all its direct existing
neighbours:

e Top neighbour: e(i,i — C) if i > C

e Bottom neighbour: e(i,i + C) if i < C(R — 1)

e Left neighbour: e(i,i — 1) if (i mod C) # 0

e Right neighbour: e(i,i + 1) if (i mod C) # C —1
A connection e(i,j) can be either opened (i.e. e(i,7) = 1) or closed (i.e. e(i,j) = 0). For
instance, in Figure 1, the connection e(0, 1) is opened while e(14,5) is closed. Note that
e(i,j) = e(j,i). A path p(k,l) is a sequence of opened connections e(k, ji), €(ji1, j2),--,
€(Jn-1,Jn), €(jn,!) linking cells ¢ and ¢;. A perfect maze is such that, for all pairs of
cells ¢, and ¢; with [# k, there is one and only one path p(k,!) linking them. In other

words, there should be no cycle in the maze and every cell can be reached from any other
cell.

o o o

\ i Co2_

Figure 1: A perfect maze

1.2 Algorithm

The following algorithm PERFECTMAZE creates a random perfect maze with R rows and
C' columns.

PERFECTMAZE(R, C)

M = “a maze with R rows and C' columns with all connections closed”

nbCells = R x C

// pick random cell ¢, to start building the perfect maze

s = RAND() % nbCells — 1

// VIi] contains 1 if there is a path between cell ¢; and ¢, 0 otherwise

// in other words, it contains 1 if the cell ¢; was already connected to the maze being built
V = “array of zeros of size nbCells”

return PERFECTMAZEAUX(M,V, R, C, s)

CO 1O UL Wi

The algorithm PERFECTMAZEAUX builds a random perfect maze M starting at cell
c.. Taking them in a random order, it will connect each unvisited neighbour cell ¢, of ¢,
to ¢, and build a random perfect maze from c,, recursively.

PERFECTMAZEAUX(M, R,C,V,¢)

1 V=1

2 N = "create array with c. neighbours indexes”

3 N = RANDOMSHUFFLE(N)

4 forne N

5 if V[n] ==

6 CONNECT(M, ¢, n)

7 M = PERFECTMAZEAUX(M, R,C,V,n)
8 return M

The procedure CONNECT(M, i, j) opens the connection between the cells ¢; and ¢; of
M (i.e. it makes e(i,7) = 1).

Figure 2: The memory view showing the first 1024 words of the dynamic memory.

2 Memory view of the g-simulator

The S-simulator (8sim) ! presented during the tutorials features a memory view window
allowing you to visualize the 1024 first words of the dynamic memory (see Figure 2). In
this view, each pixel corresponds to 1 bit: a black pixel means this bit is set to 1 while
a white pixel means it is set to 0. Each line of pixels corresponds to eight consecutive
words of the memory. This window is where you will draw the maze. Be careful: while
the words are drawn in the window following the order of addresses (i.e. word addresses
increase when moving from left to right or down), the bits within a 32 bit word are
displayed with the most significant bit on the right.

3 Project

You task is to implement a perfect maze procedure in a file called perfect maze.asm
ready to be included in the file main.asm that is provided. This procedure should im-
plement the recursive procedure PerfectMazeAux given in Section 1.2 and modify the
memory to draw the resulting random perfect maze?. This procedure should be callable
using a label perfect maze and should have five parameters:

1. maze: a pointer to the first word containing the memory image of the maze
2. nb_rows : the number of rows in the maze
3. nb_cols : the number of columns in the maze

4. visited : a pointer to a bitmap containing the information whether each cell was
visited or not. The bit b;; (i.e. i bit of the j word of the bitmap) is set to 1 if
the cell cs3ax 4 has already been attached to the maze, 0 otherwise.

5. curr_cell : the cell from which the maze should be constructed

!The Bsim program can be found on the page http://www.montefiore.ulg.ac.be/~rmormont/
?rpath=/info0012.

2The memory should be updated such that the maze can be seen in the memory view of the S-simulator,
see Figure 2.

http://www.montefiore.ulg.ac.be/~rmormont/?rpath=/info0012
http://www.montefiore.ulg.ac.be/~rmormont/?rpath=/info0012

You are provided with a file perfect maze.c, a C implementation of the perfect maze
procedure, that you can use as basis for your implementation. While you are not bound
to translate all implementation details contained in this file in your assembly code, you
are still expected to implement the recursive algorithm presented in Section 1.2 and
implemented in perfect maze.c.

In addition to the file perfect_maze.c, you are provided with two other assembly files:

e beta.uasm: the definition of the S-assembly. You can check this file to see which
macros you can use in your own code. Especially, the macro RANDOM() might be
useful. ;)

e main.asm: this file contains the main program that will be used to test your proce-
dure. It does the following:

— write a fully closed maze in the memory

allocate the visited array

initialize the stack and relevant pointers (SP and BP)

— pick a random cell to start building the maze

call the perfect_maze procedure with relevant parameters

4 Additional guidelines

4.1 Practical organization

In order to learn (-assembly effectively, this project will be done by teams of two
students. A report of maximum two pages may be provided if you want to explain
things that are not easy to understand by just looking at the code and comments. Pro-
viding a report does not necessarily mean that you will earn a better grade; it should be
provided only if it brings something that is not mentioned clearly elsewhere (e.g. in the
comments).

Plagiarism is of course not allowed and severely punished. Any detected attempt will
result in the grade 0/20 for all who have participated in this practice.

You will include your completed perfect maze.asm and your (optional) report (PDF
only) in a ZIP archive named sXXXXXX_NAME1_sYYYYYY NAME2.zip where (sXXXXXX, NAME1)
and (sYYYYYY, NAME2) are the student ID and family name in uppercase of the two team
members. Insert your perfect maze.asm in a ZIP archive even if you do not provide a
report. Naming your files differently or submitting other files will result in a penalty.

Submit your archive to the Montefiore Submission Platform?, after having created
an account if necessary. If you encounter any problem with the platform, let me know.
However problems that unexpectedly and mysteriously appear five minutes before the
deadline will not be considered. Do not send your work by e-mail; it will not be
read.

3http://submit.montefiore.ulg.ac.be/

http://submit.montefiore.ulg.ac.be/

4.2 Code guidelines

Choose a coding style and stick to it. You are advised to use the coding style used in
main.asm. The goal here is not to write code which is as compact and efficient as possible,
but to learn the concepts of S-assembly. However, your code should not be unreasonably
long and inefficient: minimize the number of registers you use in your recursive procedures,
as it impacts the growth rate of your stack.

4.3 Documentation

One of the challenges when writing assembly code is to write a program which is relatively
easy to understand. Thus, the second most important element taken into account for your
grade (after correctness) will be your code’s readability. Use comments extensively (your
comments can be larger than your code), but don’t be verbose : explain the non obvious,
not the immediately apparent.

In addition to the comments written alongside your code, all your procedures should
be documented using pre- and post-conditions:

e Arguments have to be properly defined
e Any return value must be documented
e Any side effect (e.g. modification of the dynamic memory) must be documented

Your are free (and advised) to use macros to reduce the redundancy in your code.
Those macros should be documented like your procedures (arguments and operation per-
formed).

Good luck and have fun !

	Introduction
	Perfect maze
	Algorithm

	Memory view of the -simulator
	Project
	Additional guidelines
	Practical organization
	Code guidelines
	Documentation

